在编写设备驱动时, tasklet 机制是一种比较常见的机制,通常用于减少中断处理的时间,将本应该是在中断服务程序中完成的任务转化成软中断完成。

为了最大程度的避免中断处理时间过长而导致中断丢失,有时候我们需要把一些在中断处理中不是非常紧急的任务放在后面执行,而让中断处理程序尽快返回。在老版本的 linux 中通常将中断处理分为 top half handler 、 bottom half handler 。利用 top half handler 处理中断必须处理的任务,而 bottom half handler 处理不是太紧急的任务。

但是 linux2.6 以后的 linux 采取了另外一种机制,就是软中断来代替 bottom half handler的处理。而 tasklet 机制正是利用软中断来完成对驱动 bottom half 的处理。 Linux2.6 中软中断通常只有固定的几种: HI_SOFTIRQ( 高优先级的 tasklet ,一种特殊的 tasklet) 、TIMER_SOFTIRQ (定时器)、 NET_TX_SOFTIRQ (网口发送)、 NET_RX_SOFTIRQ (网口接收) 、 BLOCK_SOFTIRQ (块设备)、 TASKLET_SOFTIRQ (普通 tasklet )。当然也可以通过直接修改内核自己加入自己的软中断,但是一般来说这是不合理的,软中断的优先级比较高,如果不是在内核处理频繁的任务不建议使用。通常驱动用户使用 tasklet 足够了。

软中断和 tasklet 的关系如下图:

上图可以看出, ksoftirqd 是一个后台运行的内核线程,它会周期的遍历软中断的向量列表,如果发现哪个软中断向量被挂起了( pend ),就执行对应的处理函数,对于 tasklet 来说,此处理函数就是 tasklet_action ,这个处理函数在系统启动时初始化软中断的就挂接了。

Tasklet_action 函数,遍历一个全局的 tasklet_vec 链表(此链表对于 SMP 系统是每个CPU 都有一个),此链表中的元素为 tasklet_struct 。此结构如下 :

struct tasklet_struct

{

struct tasklet_struct *next;

unsigned long state;

atomic_t count;

void (*func)(unsigned long);

unsigned long data;

};

每个结构一个函数指针,指向你自己定义的函数。当我们要使用 tasklet ,首先新定义一个tasklet_struct 结构,并初始化好要执行函数指针,然后将它挂接到 task_vec 链表中,并发一个软中断就可以等着被执行了。

原理大概如此,对于 linux 驱动的作者其实不需要关心这些,关键是我们如何去使用 tasklet这种机制。

Linux 中提供了如下接口:

DECLARE_TASKLET(name,function,data) :此接口初始化一个 tasklet ;其中 name是 tasklet 的名字, function 是执行 tasklet 的函数; data 是 unsigned long 类型的function 参数。

static inline void tasklet_schedule(struct tasklet_struct *t) :此接口将定义后的tasklet 挂接到 cpu 的 tasklet_vec 链表,具体是哪个 cpu 的 tasklet_vec 链表,是根据当前线程是运行在哪个 cpu 来决定的。此函数不仅会挂接 tasklet ,而且会起一个软 tasklet 的软中断 , 既把 tasklet 对应的中断向量挂起 (pend) 。

两个工作完成后,基本上可以了, tasklet 机制并不复杂,很容易的使程序尽快的响应中断,避免造成中断丢失。

--

tasklet是中断处理下半部分最常用的一种方法,驱动程序一般先申请中断,在中断处理函数内完成中断上半部分的工作后调用tasklet。tasklet有如下特点:

1.tasklet只可以在一个CPU上同步地执行,不同的tasklet可以在不同地CPU上同步地执行。

2.tasklet的实现是建立在两个软件中断的基础之上的,即HI_SOFTIRQ和TASKLET_SOFTIRQ,本质上没有什么区别,只不过HI_SOFTIRQ的优先级更高一些

3.由于tasklet是在软中断上实现的,所以像软中断一样不能睡眠、不能阻塞,处理函数内不能含有导致睡眠的动作,如减少信号量、从用户空间拷贝数据或手工分配内存等。

4.一个 tasklet 能够被禁止并且之后被重新使能; 它不会执行直到它被使能的次数与被禁止的次数相同.

5.tasklet的串行化使tasklet函数不必是可重入的,因此简化了设备驱动程序开发者的工作。

6.每个cpu拥有一个tasklet_vec链表,具体是哪个cpu的tasklet_vec链表,是根据当前线程是运行在哪个cpu来决定的。

1.tasklet结构体

  1. struct tasklet_struct
  2. {
  3. struct tasklet_struct *next;
  4. unsigned long state;
  5. atomic_t count;
  6. void (*func)(unsigned long);
  7. unsigned long data;
  8. };
  9. tasklet结构变量是tasklet_vec链表的一个节点,next是链表的下一节点,state使用了两个位如下
  10. enum
  11. {
  12. TASKLET_STATE_SCHED,    /* 1已经被调度,0表示还没调度*/
  13. TASKLET_STATE_RUN   /* 1tasklet正在执行,0表示尚未执行,只针对SMP有效,单处理器无意义 */
  14. };
  15. count用于禁止使能,每禁止一次计数加一,没使能一次计数减一,只有禁止次数和使能次数一样(count等于0)时tasklet才会执行调用函数。
  16. func 执行函数不能有导致睡眠、不能阻塞的代码。
  17. data 执行函数的参数

2.tasklet的定义

  1. 定义时初始化
  2. 定义变量名为name的tasklets_struct变量,并初始化调用函数为func,参数为data,使能tasklet
  3. DECLARE_TASKLET(name, func, data);     #define DECLARE_TASKLET(name, func, data) \
  4. struct tasklet_struct name = { NULL, 0, ATOMIC_INIT(0), func, data }
  5. 定义变量名为name的tasklets_struct变量,并初始化调用函数为func,参数为data,禁止tasklet
  6. DECLARE_TASKLET_DISABLED(name, func, data);
  7. #define DECLARE_TASKLET_DISABLED(name, func, data) \
  8. struct tasklet_struct name = { NULL, 0, ATOMIC_INIT(1), func, data }
  9. 运行中初始化    先定义    struct tasklet_struct name ;
  10. 后初始化
  11. void tasklet_init(struct tasklet_struct *t,void (*func)(unsigned long), unsigned long data)
  12. {
  13. t->next = NULL;              //
  14. t->state = 0;                //设置为未调度 未运行
  15. atomic_set(&t->count, 0);    //默认使能
  16. t->func = func;              //调用函数
  17. t->data = data;              //调用函数参数
  18. }

3.tasklet的调用过程

  1. static inline void tasklet_schedule(struct tasklet_struct *t);使用此函数即可完成调用
  2. static inline void tasklet_schedule(struct tasklet_struct *t)
  3. {
  4. /*test_and_set_bit设置调度位TASKLET_STATE_SCHED,test_and_set_bit返回t->state设置前状态,如果设置前状态为1(已被调用)那么直接退出否则进入__tasklet_schedule函数*/
  5. if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->state))
  6. __tasklet_schedule(t);
  7. }
  8. void fastcall __tasklet_schedule(struct tasklet_struct *t)
  9. {
  10. unsigned long flags;
  11. local_irq_save(flags);                      //关中断保存中断状态
  12. t->next = __get_cpu_var(tasklet_vec).list;  //这两行用于将新插入的节点 放置在tasklet_vec链表的头部
  13. __get_cpu_var(tasklet_vec).list = t;        //
  14. raise_softirq_irqoff(TASKLET_SOFTIRQ);      //触发一个软终端
  15. local_irq_restore(flags);                   //使能中断的同时还恢复了由 local_irq_save() 所保存的中断状态
  16. }
  17. 至此调度函数已经触发了一个软中断,具体中断函数看tasklet的初始化
  18. void __init softirq_init(void)
  19. {
  20. open_softirq(TASKLET_SOFTIRQ, tasklet_action, NULL);//可以看到软中断触发后会执行tasklet_action这个函数
  21. open_softirq(HI_SOFTIRQ, tasklet_hi_action, NULL);
  22. }
  23. static void tasklet_action(struct softirq_action *a)
  24. {
  25. struct tasklet_struct *list;
  26. local_irq_disable();                       //这里先关中断 保证原子操作
  27. list = __get_cpu_var(tasklet_vec).list;    //取出tasklet_vec链表表头
  28. __get_cpu_var(tasklet_vec).list = NULL;    //因为下面将会一次处理完,这里可以预先清空tasklet_vec链表,对于为处理完的会重新加入链表
  29. //也可以实现在tasklet的处理函数中重新加入自己。
  30. local_irq_enable();
  31. while (list) {
  32. struct tasklet_struct *t = list;       //取一节点
  33. list = list->next;                     //循环遍历全部节点
  34. if (tasklet_trylock(t)) {              //这里只是测试TASKLET_STATE_RUN标记,防止tasklet重复调用
  35. //疑问:这里如果判断tasklet已经在上运行了,trylock失败,那么为什么后面会被重新加入链表呢,那不是下次又执行了?
  36. if (!atomic_read(&t->count)) {     //疑问: 如果tasklet被禁止了那么后面有把它加回链表中重新触发一次软中断,这样不是一直有软中断了吗?为什么不在禁止的时候移出链表,使能时候在加入呢?
  37. if (!test_and_clear_bit(TASKLET_STATE_SCHED, &t->state)) //检查可调度位是否设置了,正常应该设置了的
  38. BUG();
  39. t->func(t->data);              //处理调用函数
  40. tasklet_unlock(t);             //清TASKLET_STATE_RUN标记
  41. continue;
  42. }
  43. tasklet_unlock(t);
  44. }
  45. local_irq_disable();
  46. t->next = __get_cpu_var(tasklet_vec).list; //对于trylock失败和tasklet禁止的节点会被重新加入链表
  47. __get_cpu_var(tasklet_vec).list = t;
  48. __raise_softirq_irqoff(TASKLET_SOFTIRQ);   //发起新的软中断,这里有两条链表一条是处理中的链表list,一个是当前tasklet_vec中的链表,当出现不能处理的节点时将节点重新加入tasklet_vec中后发起新的软中断,那么未处理的节点也会在下次中断中处理。
  49. local_irq_enable();
  50. }
  51. }

4.相关函数

    1. /*和tasklet_disable类似,但是tasklet可能仍然运行在另一个 CPU */
    2. static inline void tasklet_disable_nosync(struct tasklet_struct *t)
    3. {
    4. atomic_inc(&t->count);      //减少计数后,t可能正在运行
    5. smp_mb__after_atomic_inc(); //保证在多处理器时同步
    6. }
    7. /*函数暂时禁止给定的tasklet被tasklet_schedule调度,直到这个tasklet被再次被enable;若这个tasklet当前在运行, 这个函数忙等待直到这个tasklet退出*/
    8. static inline void tasklet_disable(struct tasklet_struct *t){
    9. tasklet_disable_nosync(t);
    10. tasklet_unlock_wait(t);  //等待TASKLET——STATE_RUN标记清零
    11. smp_mb();
    12. }
    13. static inline int tasklet_trylock(struct tasklet_struct *t){
    14. return !test_and_set_bit(TASKLET_STATE_RUN, &(t)->state);
    15. }
    16. static inline void tasklet_unlock(struct tasklet_struct *t){
    17. smp_mb__before_clear_bit();
    18. clear_bit(TASKLET_STATE_RUN, &(t)->state);
    19. }
    20. static inline void tasklet_unlock_wait(struct tasklet_struct *t){
    21. while (test_bit(TASKLET_STATE_RUN, &(t)->state)) {
    22. barrier();
    23. }
    24. }
    25. /*使能一个之前被disable的tasklet;若这个tasklet已经被调度, 它会很快运行。tasklet_enable和tasklet_disable必须匹配调用, 因为内核跟踪每个tasklet的"禁止次数"*/
    26. static inline void tasklet_enable(struct tasklet_struct *t)
    27. {
    28. smp_mb__before_atomic_dec();
    29. atomic_dec(&t->count);
    30. }
    31. /*和tasklet_schedule类似,只是在更高优先级执行。当软中断处理运行时, 它处理高优先级 tasklet 在其他软中断之前,只有具有低响应周期要求的驱动才应使用这个函数, 可避免其他软件中断处理引入的附加周期*/
    32. void tasklet_hi_schedule(struct tasklet_struct *t);
    33. /*确保了 tasklet 不会被再次调度来运行,通常当一个设备正被关闭或者模块卸载时被调用。如果 tasklet 正在运行, 这个函数等待直到它执行完毕。若 tasklet 重新调度它自己,则必须阻止在调用 tasklet_kill 前它重新调度它自己,如同使用 del_timer_sync*/
    34. void tasklet_kill(struct tasklet_struct *t)
    35. {
    36. if (in_interrupt())
    37. printk("Attempt to kill tasklet from interrupt\n");
    38. while (test_and_set_bit(TASKLET_STATE_SCHED, &t->state)) { //检测t是否被调度
    39. do
    40. yield();
    41. while (test_bit(TASKLET_STATE_SCHED, &t->state));          //等待t调度位清零,还未执行调用函数
    42. }
    43. tasklet_unlock_wait(t);                                        //等待t调用函数执行完
    44. clear_bit(TASKLET_STATE_SCHED, &t->state);                     //函数调用完可能t被重新加入链表,所以再清一次保证不再调用
    45. }
    46. 这个函数不是真的去杀掉被调度的tasklet,而是保证tasklet不再调用

linux设备驱动编写_tasklet机制的更多相关文章

  1. linux设备驱动编写_tasklet机制(转)

    在编写设备驱动时, tasklet 机制是一种比较常见的机制,通常用于减少中断处理的时间,将本应该是在中断服务程序中完成的任务转化成软中断完成. 为了最大程度的避免中断处理时间过长而导致中断丢失,有时 ...

  2. Linux设备驱动之semaphore机制【转】

    转自:http://blog.csdn.net/xiao229404041/article/details/7031776 Linux设备驱动之semaphore机制在Linux系统中,信号号是一种重 ...

  3. linux设备驱动编写入门

    linux设备驱动是什么,我个人的理解是liunx有用户态和内核态,用户空间中是不能直接对设备的外设进行使用而内核态中却可以,这时我们需要在内核空间中将需要的外设驱动起来供用户空间使用.linux的驱 ...

  4. Linux 设备驱动之 UIO 机制

    一个设备驱动的主要任务有两个: 1. 存取设备的内存 2. 处理设备产生的中断 对于第一个任务.UIO 核心实现了mmap()能够处理物理内存(physical memory),逻辑内存(logica ...

  5. Linux 设备驱动之 UIO 机制(基本概念)

    一个设备驱动的主要任务有两个: 1. 存取设备的内存 2. 处理设备产生的中断 对于第一个任务.UIO 核心实现了mmap()能够处理物理内存(physical memory),逻辑内存(logica ...

  6. 【Linux高级驱动】linux设备驱动模型之平台设备驱动机制

    [1:引言: linux字符设备驱动的基本编程流程] 1.实现模块加载函数  a.申请主设备号    register_chrdev(major,name,file_operations);  b.创 ...

  7. linux设备驱动概述,王明学learn

    linux设备驱动学习-1 本章节主要学习有操作系统的设备驱动和无操作系统设备驱动的区别,以及对操作系统和设备驱动关系的认识. 一.设备驱动的作用 对设备驱动最通俗的解释就是“驱使硬件设备行动” .设 ...

  8. linux设备驱动归纳总结(十二):简单的数码相框【转】

    本文转载自:http://blog.chinaunix.net/uid-25014876-id-116926.html linux设备驱动归纳总结(十二):简单的数码相框 xxxxxxxxxxxxxx ...

  9. linux设备驱动归纳总结(六):3.中断的上半部和下半部——tasklet【转】

    本文转载自:http://blog.chinaunix.net/uid-25014876-id-100005.html linux设备驱动归纳总结(六):3.中断的上半部和下半部——tasklet x ...

随机推荐

  1. PostgreSQL Replication之第十一章 使用Skytools(3)

    11.3 管理 pgq-queues Skytools 的一个核心组件是pgq.它提供了一个通用排队接口,它可以让您把消息从一个消息提供者传送到一个任意数目的接收者. 现在的问题是:一般来说,一个队列 ...

  2. Leetcode: Max Sum of Rectangle No Larger Than K

    Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...

  3. 配置hibernate根据实体类自动建表功能(转载)

    hibernate支持自动建表,在开发阶段很方便,可以保证hbm与数据库表结构的自动同步. 如何使用呢?很简单,只要在hibernate.cfg.xml里加上如下代码 Xml代码<propert ...

  4. poj 1417(并查集+简单dp)

    True Liars Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2087   Accepted: 640 Descrip ...

  5. android05

    #ANR(application not response) 应用程序无响应原因: >主线程里面执行了耗时的操作.就会导致应用程序无响应. <自己动手写操作系统> 带界面的应用程序都 ...

  6. SparkSQL基础应用(1.3.1)

    一.概述 从1.3版本开始Spark SQL不再是测试版本,之前使用的SchemaRDD重命名为DataFrame,统一了Java和ScalaAPI. SparkSQL是Spark框架中处理结构化数据 ...

  7. Mysql索引总结(一)

    数据库开发中索引的使用占了很重要的位置,好的索引会使数据库的读写效率加倍,烂的索引则会拖累整个系统甚至引发灾难. 索引分三类: index ----普通的索引,数据可以重复 unique ----唯一 ...

  8. 夺命雷公狗ThinkPHP项目之----企业网站27之网站前台单页的完成(从百度编辑器里面取出文章数据)

    我们的单页面里主要是为了可以取出文章分类表的栏目内容,废话先不说, 我们的实现要点: 1...获取get过来的栏目cate_id 2...然后用条件查询栏目表 <?php namespace H ...

  9. python3使用csv模块读写csv文件

    python3使用csv模块读写csv文件 读取csv文件: import csv #打开文件,用with打开可以不用去特意关闭file了,python3不支持file()打开文件,只能用open() ...

  10. c语言 typedef

      在C和C++编程语言中,typedef是一个关键字.它用来对一个资料类型取一个新名字.目的是为了使源代码更易于阅读和理解. 来看以下程式码: int coxes; int jaffa; ... c ...