文本挖掘的paper没找到统一的benchmark,只好自己跑程序,走过路过的前辈如果知道20newsgroups或者其它好用的公共数据集的分类(最好要所有类分类结果,全部或取部分特征无所谓)麻烦留言告知下现在的benchmark,万谢!

嗯,说正文。20newsgroups官网上给出了3个数据集,这里我们用最原始的20news-19997.tar.gz

分为以下几个过程:

  • 加载数据集
  • 提feature
  • 分类
    • Naive Bayes
    • KNN
    • SVM
  • 聚类
说明: scipy官网上有参考,但是看着有点乱,而且有bug。本文中我们分块来看。
 
Environment:Python 2.7 + Scipy (scikit-learn)
 
1.加载数据集
20news-19997.tar.gz下载数据集,解压到scikit_learn_data文件夹下,加载数据,详见code注释。
  1. #first extract the 20 news_group dataset to /scikit_learn_data
  2. from sklearn.datasets import fetch_20newsgroups
  3. #all categories
  4. #newsgroup_train = fetch_20newsgroups(subset='train')
  5. #part categories
  6. categories = ['comp.graphics',
  7. 'comp.os.ms-windows.misc',
  8. 'comp.sys.ibm.pc.hardware',
  9. 'comp.sys.mac.hardware',
  10. 'comp.windows.x'];
  11. newsgroup_train = fetch_20newsgroups(subset = 'train',categories = categories);
可以检验是否load好了:
  1. #print category names
  2. from pprint import pprint
  3. pprint(list(newsgroup_train.target_names))

结果:

['comp.graphics',
 'comp.os.ms-windows.misc',
 'comp.sys.ibm.pc.hardware',
 'comp.sys.mac.hardware',
 'comp.windows.x']
 
 
 
 
 
 
 
2. 提feature:
刚才load进来的newsgroup_train就是一篇篇document,我们要从中提取feature,即词频啊神马的,用fit_transform
 
Method 1. HashingVectorizer,规定feature个数
 
  1. #newsgroup_train.data is the original documents, but we need to extract the
  2. #feature vectors inorder to model the text data
  3. from sklearn.feature_extraction.text import HashingVectorizer
  4. vectorizer = HashingVectorizer(stop_words = 'english',non_negative = True,
  5. n_features = 10000)
  6. fea_train = vectorizer.fit_transform(newsgroup_train.data)
  7. fea_test = vectorizer.fit_transform(newsgroups_test.data);
  8. #return feature vector 'fea_train' [n_samples,n_features]
  9. print 'Size of fea_train:' + repr(fea_train.shape)
  10. print 'Size of fea_train:' + repr(fea_test.shape)
  11. #11314 documents, 130107 vectors for all categories
  12. print 'The average feature sparsity is {0:.3f}%'.format(
  13. fea_train.nnz/float(fea_train.shape[0]*fea_train.shape[1])*100);

结果:

Size of fea_train:(2936, 10000)
Size of fea_train:(1955, 10000)
The average feature sparsity is 1.002%
因为我们只取了10000个词,即10000维feature,稀疏度还不算低。而实际上用TfidfVectorizer统计可得到上万维的feature,我统计的全部样本是13w多维,就是一个相当稀疏的矩阵了。
 
 
**************************************************************************************************************************

上面代码注释说TF-IDF在train和test上提取的feature维度不同,那么怎么让它们相同呢?有两种方法:

 
Method 2. CountVectorizer+TfidfTransformer
 
让两个CountVectorizer共享vocabulary:
  1. #----------------------------------------------------
  2. #method 1:CountVectorizer+TfidfTransformer
  3. print '*************************\nCountVectorizer+TfidfTransformer\n*************************'
  4. from sklearn.feature_extraction.text import CountVectorizer,TfidfTransformer
  5. count_v1= CountVectorizer(stop_words = 'english', max_df = 0.5);
  6. counts_train = count_v1.fit_transform(newsgroup_train.data);
  7. print "the shape of train is "+repr(counts_train.shape)
  8. count_v2 = CountVectorizer(vocabulary=count_v1.vocabulary_);
  9. counts_test = count_v2.fit_transform(newsgroups_test.data);
  10. print "the shape of test is "+repr(counts_test.shape)
  11. tfidftransformer = TfidfTransformer();
  12. tfidf_train = tfidftransformer.fit(counts_train).transform(counts_train);
  13. tfidf_test = tfidftransformer.fit(counts_test).transform(counts_test);
结果:
*************************
CountVectorizer+TfidfTransformer
*************************
the shape of train is (2936, 66433)
the shape of test is (1955, 66433)
 
 
 
 
 
Method 3. TfidfVectorizer
 
让两个TfidfVectorizer共享vocabulary:
  1. #method 2:TfidfVectorizer
  2. print '*************************\nTfidfVectorizer\n*************************'
  3. from sklearn.feature_extraction.text import TfidfVectorizer
  4. tv = TfidfVectorizer(sublinear_tf = True,
  5. max_df = 0.5,
  6. stop_words = 'english');
  7. tfidf_train_2 = tv.fit_transform(newsgroup_train.data);
  8. tv2 = TfidfVectorizer(vocabulary = tv.vocabulary_);
  9. tfidf_test_2 = tv2.fit_transform(newsgroups_test.data);
  10. print "the shape of train is "+repr(tfidf_train_2.shape)
  11. print "the shape of test is "+repr(tfidf_test_2.shape)
  12. analyze = tv.build_analyzer()
  13. tv.get_feature_names()#statistical features/terms
结果:
 

*************************
TfidfVectorizer
*************************
the shape of train is (2936, 66433)
the shape of test is (1955, 66433)

 
 
此外,还有sklearn里封装好的抓feature函数,fetch_20newsgroups_vectorized
 
 
 
 
Method 4. fetch_20newsgroups_vectorized
 

但是这种方法不能挑出几个类的feature,只能全部20个类的feature全部弄出来:

 
  1. print '*************************\nfetch_20newsgroups_vectorized\n*************************'
  2. from sklearn.datasets import fetch_20newsgroups_vectorized
  3. tfidf_train_3 = fetch_20newsgroups_vectorized(subset = 'train');
  4. tfidf_test_3 = fetch_20newsgroups_vectorized(subset = 'test');
  5. print "the shape of train is "+repr(tfidf_train_3.data.shape)
  6. print "the shape of test is "+repr(tfidf_test_3.data.shape)
结果:
 
*************************
fetch_20newsgroups_vectorized
*************************
the shape of train is (11314, 130107)
the shape of test is (7532, 130107)
 
 
 
 
3. 分类
3.1 Multinomial Naive Bayes Classifier
见代码&comment,不解释
  1. ######################################################
  2. #Multinomial Naive Bayes Classifier
  3. print '*************************\nNaive Bayes\n*************************'
  4. from sklearn.naive_bayes import MultinomialNB
  5. from sklearn import metrics
  6. newsgroups_test = fetch_20newsgroups(subset = 'test',
  7. categories = categories);
  8. fea_test = vectorizer.fit_transform(newsgroups_test.data);
  9. #create the Multinomial Naive Bayesian Classifier
  10. clf = MultinomialNB(alpha = 0.01)
  11. clf.fit(fea_train,newsgroup_train.target);
  12. pred = clf.predict(fea_test);
  13. calculate_result(newsgroups_test.target,pred);
  14. #notice here we can see that f1_score is not equal to 2*precision*recall/(precision+recall)
  15. #because the m_precision and m_recall we get is averaged, however, metrics.f1_score() calculates
  16. #weithed average, i.e., takes into the number of each class into consideration.

注意我最后的3行注释,为什么f1≠2*(准确率*召回率)/(准确率+召回率)

其中,函数calculate_result计算f1:

  1. def calculate_result(actual,pred):
  2. m_precision = metrics.precision_score(actual,pred);
  3. m_recall = metrics.recall_score(actual,pred);
  4. print 'predict info:'
  5. print 'precision:{0:.3f}'.format(m_precision)
  6. print 'recall:{0:0.3f}'.format(m_recall);
  7. print 'f1-score:{0:.3f}'.format(metrics.f1_score(actual,pred));

3.2 KNN:

  1. ######################################################
  2. #KNN Classifier
  3. from sklearn.neighbors import KNeighborsClassifier
  4. print '*************************\nKNN\n*************************'
  5. knnclf = KNeighborsClassifier()#default with k=5
  6. knnclf.fit(fea_train,newsgroup_train.target)
  7. pred = knnclf.predict(fea_test);
  8. calculate_result(newsgroups_test.target,pred);

3.3 SVM:

  1. ######################################################
  2. #SVM Classifier
  3. from sklearn.svm import SVC
  4. print '*************************\nSVM\n*************************'
  5. svclf = SVC(kernel = 'linear')#default with 'rbf'
  6. svclf.fit(fea_train,newsgroup_train.target)
  7. pred = svclf.predict(fea_test);
  8. calculate_result(newsgroups_test.target,pred);

结果:

*************************

Naive Bayes
*************************
predict info:
precision:0.764
recall:0.759
f1-score:0.760
*************************
KNN
*************************
predict info:
precision:0.642
recall:0.635
f1-score:0.636
*************************
SVM
*************************
predict info:
precision:0.777
recall:0.774
f1-score:0.774

4. 聚类

  1. ######################################################
  2. #KMeans Cluster
  3. from sklearn.cluster import KMeans
  4. print '*************************\nKMeans\n*************************'
  5. pred = KMeans(n_clusters=5)
  6. pred.fit(fea_test)
  7. calculate_result(newsgroups_test.target,pred.labels_);

结果:

*************************
KMeans
*************************
predict info:
precision:0.264
recall:0.226
f1-score:0.213

本文全部代码下载:在此

貌似准确率好低……那我们用全部特征吧……结果如下:

*************************
Naive Bayes
*************************
predict info:
precision:0.771
recall:0.770
f1-score:0.769
*************************
KNN
*************************
predict info:
precision:0.652
recall:0.645
f1-score:0.645
*************************
SVM
*************************
predict info:
precision:0.819
recall:0.816
f1-score:0.816
*************************
KMeans
*************************
predict info:
precision:0.289
recall:0.313
f1-score:0.266

应用scikit-learn做文本分类(转)的更多相关文章

  1. 《机器学习系统设计》之应用scikit-learn做文本分类(上)

    前言: 本系列是在作者学习<机器学习系统设计>([美] WilliRichert)过程中的思考与实践,全书通过Python从数据处理.到特征project,再到模型选择,把机器学习解决这个 ...

  2. 使用CNN做文本分类——将图像2维卷积换成1维

    使用CNN做文本分类 from __future__ import division, print_function, absolute_import import tensorflow as tf ...

  3. 应用scikit-learn做文本分类

    文本挖掘的paper没找到统一的benchmark,只好自己跑程序,走过路过的前辈如果知道20newsgroups或者其它好用的公共数据集的分类(最好要所有类分类结果,全部或取部分特征无所谓)麻烦留言 ...

  4. 如何使用scikit—learn处理文本数据

    答案在这里:http://www.tuicool.com/articles/U3uiiu http://scikit-learn.org/stable/modules/feature_extracti ...

  5. 文本分类实战(十)—— BERT 预训练模型

    1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...

  6. Tensorflor实现文本分类

    Tensorflor实现文本分类 下面我们使用CNN做文本分类 cnn实现文本分类的原理 下图展示了如何使用cnn进行句子分类.输入是一个句子,为了使其可以进行卷积,首先需要将其转化为向量表示,通常使 ...

  7. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  8. R语言做文本挖掘 Part4文本分类

    Part4文本分类 Part3文本聚类提到过.与聚类分类的简单差异. 那么,我们需要理清训练集的分类,有明白分类的文本:測试集,能够就用训练集来替代.预測集,就是未分类的文本.是分类方法最后的应用实现 ...

  9. 基于Naive Bayes算法的文本分类

    理论 什么是朴素贝叶斯算法? 朴素贝叶斯分类器是一种基于贝叶斯定理的弱分类器,所有朴素贝叶斯分类器都假定样本每个特征与其他特征都不相关.举个例子,如果一种水果其具有红,圆,直径大概3英寸等特征,该水果 ...

随机推荐

  1. AdventureWorksDW2008R2 attach: Unable to open the physical file. Operating system error 5: "5(Access is denied.)

    http://stackoverflow.com/questions/26014133/adventureworksdw2008r2-attach-unable-to-open-the-physica ...

  2. 常用WinPE

    微PE工具箱:http://www.wepe.com.cn/ 绝对PE工具箱:http://dl.pconline.com.cn/download/64736.html 通用PE工具箱:http:// ...

  3. hibernate CascadeType属性说明

    CascadeType.PERSIST //只有A类新增时,会级联B对象新增.若B对象在数据库存(跟新)在则抛异常(让B变为持久态) CascadeType.MERGE //指A类新增或者变化,会级联 ...

  4. pyhton类集成

    class SchoolMember:   def __init__(self,name,age):     self.name = name     self.age = age     print ...

  5. 网易云课堂学习之VS相关

    1.为开发好的项目文件瘦身 如:在项目文件ScreenCapture中,只需保留框起来的两个文件即可 而且在框起来的ScreenCapture里的Debug文件也可以删掉,整个文件由75.4 MB变为 ...

  6. 《OD学hadoop》mac下使用VMware Fusion安装centos

    一. NAT模式网络访问 (1)在linux中输入命令ifconfig查看网络信息 (2)在mac中输入命令ifconfig查看网络信息 lo0: flags=<UP,LOOPBACK,RUNN ...

  7. hibernate的三种状态(儿)

    第五讲:hibernate的三种状态 瞬时:bean对象与session,与数据库无关.在session对象的save方法保存之前. 持久状态(托管):bean对象与session有关,数据库中有对应 ...

  8. Android 第三方应用接入微信平台(1)

    关键字:微信开放平台   Android第三方应用接入微信 微信平台开放后倒是挺火的,许多第三方应用都想试下接入微信这个平台, 毕竟可以利用微信建立起来的关系链来拓展自己的应用还是挺不错的,可 以节约 ...

  9. && 用法解释

    A&&B 首先判断A,A成功然后判断B:A不成功则结束判断.

  10. Python3 学习第九弹: 模块学习二之文件管理模块

    os模块 提供访问操作系统的接口 1> name 获得当前操作系统 其中 'nt' 是 windows 'posix' 是 linux 2> environ 获得当前系统的环境变量的字典, ...