Plotting means and error bars (ggplot2)
library(ggplot2)
#############################################
# summarySE
############################################# ## Summarizes data.
## Gives count, mean, standard deviation, standard error of the mean, and confidence interval (default 95%).
## data: a data frame.
## measurevar: the name of a column that contains the variable to be summariezed
## groupvars: a vector containing names of columns that contain grouping variables
## na.rm: a boolean that indicates whether to ignore NA's
## conf.interval: the percent range of the confidence interval (default is 95%)
summarySE <- function(data=NULL, measurevar, groupvars=NULL, na.rm=FALSE,
conf.interval=.95, .drop=TRUE) {
library(plyr) # New version of length which can handle NA's: if na.rm==T, don't count them
length2 <- function (x, na.rm=FALSE) {
if (na.rm) sum(!is.na(x))
else length(x)
} # This does the summary. For each group's data frame, return a vector with
# N, mean, and sd
datac <- ddply(data, groupvars, .drop=.drop,
.fun = function(xx, col) {
c(N = length2(xx[[col]], na.rm=na.rm),
mean = mean (xx[[col]], na.rm=na.rm),
sd = sd (xx[[col]], na.rm=na.rm)
)
},
measurevar
) # Rename the "mean" column
datac <- rename(datac, c("mean" = measurevar)) datac$se <- datac$sd / sqrt(datac$N) # Calculate standard error of the mean # Confidence interval multiplier for standard error
# Calculate t-statistic for confidence interval:
# e.g., if conf.interval is .95, use .975 (above/below), and use df=N-1
ciMult <- qt(conf.interval/2 + .5, datac$N-1)
datac$ci <- datac$se * ciMult return(datac)
} #############################################
# Sample data
############################################# library(ggplot2)
tg <- ToothGrowth
head(tg) tgc <- summarySE(tg, measurevar="len", groupvars=c("supp","dose"))
tgc #############################################
# Line graphs
############################################# # Standard error of the mean
ggplot(tgc, aes(x=dose, y=len, colour=supp)) +
geom_errorbar(aes(ymin=len-se, ymax=len+se), width=.1) +
geom_line() +
geom_point() # The errorbars overlapped, so use position_dodge to move them horizontally
pd <- position_dodge(0.1) # move them .05 to the left and right ggplot(tgc, aes(x=dose, y=len, colour=supp)) +
geom_errorbar(aes(ymin=len-se, ymax=len+se), width=.1, position=pd) +
geom_line(position=pd) +
geom_point(position=pd) # Use 95% confidence interval instead of SEM
ggplot(tgc, aes(x=dose, y=len, colour=supp)) +
geom_errorbar(aes(ymin=len-ci, ymax=len+ci), width=.1, position=pd) +
geom_line(position=pd) +
geom_point(position=pd) # Black error bars - notice the mapping of 'group=supp' -- without it, the error
# bars won't be dodged!
ggplot(tgc, aes(x=dose, y=len, colour=supp, group=supp)) +
geom_errorbar(aes(ymin=len-ci, ymax=len+ci), colour="black", width=.1, position=pd) +
geom_line(position=pd) +
geom_point(position=pd, size=3) # A finished graph with error bars representing the standard error of the mean might
# look like this. The points are drawn last so that the white fill goes on top of
# the lines and error bars. ggplot(tgc, aes(x=dose, y=len, colour=supp, group=supp)) +
geom_errorbar(aes(ymin=len-se, ymax=len+se), colour="black", width=.1, position=pd) +
geom_line(position=pd) +
geom_point(position=pd, size=3, shape=21, fill="white") + # 21 is filled circle
xlab("Dose (mg)") +
ylab("Tooth length") +
scale_colour_hue(name="Supplement type", # Legend label, use darker colors
breaks=c("OJ", "VC"),
labels=c("Orange juice", "Ascorbic acid"),
l=40) + # Use darker colors, lightness=40
ggtitle("The Effect of Vitamin C on\nTooth Growth in Guinea Pigs") +
expand_limits(y=0) + # Expand y range
scale_y_continuous(breaks=0:20*4) + # Set tick every 4
theme_bw() +
theme(legend.justification=c(1,0),
legend.position=c(1,0)) # Position legend in bottom right #############################################
# Bar graphs
############################################# # Use dose as a factor rather than numeric
tgc2 <- tgc
tgc2$dose <- factor(tgc2$dose) # Error bars represent standard error of the mean
ggplot(tgc2, aes(x=dose, y=len, fill=supp)) +
geom_bar(position=position_dodge(), stat="identity") +
geom_errorbar(aes(ymin=len-se, ymax=len+se),
width=.2, # Width of the error bars
position=position_dodge(.9)) # Use 95% confidence intervals instead of SEM
ggplot(tgc2, aes(x=dose, y=len, fill=supp)) +
geom_bar(position=position_dodge(), stat="identity") +
geom_errorbar(aes(ymin=len-ci, ymax=len+ci),
width=.2, # Width of the error bars
position=position_dodge(.9)) ## A finished graph might look like this. ggplot(tgc2, aes(x=dose, y=len, fill=supp)) +
geom_bar(position=position_dodge(), stat="identity",
colour="black", # Use black outlines,
size=.3) + # Thinner lines
geom_errorbar(aes(ymin=len-se, ymax=len+se),
size=.3, # Thinner lines
width=.2,
position=position_dodge(.9)) +
xlab("Dose (mg)") +
ylab("Tooth length") +
scale_fill_hue(name="Supplement type", # Legend label, use darker colors
breaks=c("OJ", "VC"),
labels=c("Orange juice", "Ascorbic acid")) +
ggtitle("The Effect of Vitamin C on\nTooth Growth in Guinea Pigs") +
scale_y_continuous(breaks=0:20*4) +
theme_bw()
REF:
http://www.cookbook-r.com/Graphs/Plotting_means_and_error_bars_%28ggplot2%29/
http://www.rdocumentation.org/packages/bear/functions/summarySE
http://www.cookbook-r.com/Manipulating_data/Summarizing_data/
http://www.inside-r.org/packages/cran/rmisc/docs/summarySE
Plotting means and error bars (ggplot2)的更多相关文章
- R绘图基础
一,布局 R绘图所占的区域,被分成两大部分,一是外围边距,一是绘图区域. 外围边距可使用par()函数中的oma来进行设置.比如oma=c(4,3,2,1),就是指外围边距分别为下边距:4行,左边距3 ...
- DATA VISUALIZATION – PART 2
A Quick Overview of the ggplot2 Package in R While it will be important to focus on theory, I want t ...
- Getting started with machine learning in Python
Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...
- 40 JavaScript Chart and Graph Libraries for Developers--reference
reference:http://www.egrappler.com/javascript-chart-and-graph-libraries-for-developers/ BY TEAMEGRAP ...
- Analysis Guidelines
This section describes some best practices for analysis. These practices come from experience of ana ...
- 方差分析 | ANOVA | 原理 | R代码 | 进阶 | one way and two way
原理 比较两组就用t-test,比较三组及以上就用ANOVA.注意:我们默认说的都是one way ANOVA,也就是对group的分类标准只有一个,比如case和control(ABCD多组),tw ...
- ggplot2-为图形加入直线
本文更新地址:http://blog.csdn.net/tanzuozhev/article/details/51112057 本文在 http://www.cookbook-r.com/Graphs ...
- [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
About this Course This course will teach you the "magic" of getting deep learning to work ...
- 25个免费的jQuery/ JavaScript的图表和图形库
1. JS Charts Features Prepare your chart data in XML, JSON or JavaScript Array Create charts in dif ...
随机推荐
- OpenGL在什么样的领域才是主角?
从OpenGL入门到现在掌握OpenGL开发(仅仅是掌握而已).随着对OpenGL理解的加深,也一点点的了解OpenGL所涉及的行业,有些行业OpenGL是主角,有些行业OpenGL是配角 ...
- asp.net项目发布网上-当前自定义错误设置禁止远程查看应用程序
早上服务器的系统突然出错了,悲剧~ ==============异常信息:============================== 服务器上出现应用程序错误.此应用程序的当前自定义错误设置禁止远程 ...
- android记住密码和自动登陆
import android.app.Activity; import android.content.Intent; import android.content.SharedPreferences ...
- cornerstone的简单使用
第一步打开工具点击左下角那个加号,弹出的选项中选Add Repository..或者直接点中间显示的Add Repository...是一样的 第二步: 下面填的内容是你经理给你的账号和密码,你只要c ...
- ubunu下用命令设置壁纸
ubunu下用命令设置壁纸: gsettings set org.gnome.desktop.background picture-uri “file:[fileName]” eg:gsettings ...
- ubuntu下配置tomcat
配置tomcat 1.解压 tar -zxvf apache-tomcat-7.0.53.tar.gz 2.修改/bin/catalina.sh cygwin=falsedarwin=falseos4 ...
- ubuntu下搭建JAVA开发环境【转】
转自:http://jingyan.baidu.com/article/86fae346b696633c49121a30.html JAVA开发环境是一种跨平台的程序设计语言,可以在windows.L ...
- java 调用grads 自动批量生成图片
将 -lbcx 命令 后面的4个参数(gs文件名.参数1.参数2.参数3) 放在单引号里面就可以执行了.
- Java中的HashMap 浅析
在Java的集合框架中,HashSet,HashMap是用的比较多的一种,顺序结构的ArrayList.LinkedList这种也比较多,而像那几个线程同步的容器就用的比较少,像Vector和Hash ...
- JDBC的几种驱动
不同的数据库的驱动是不同的 其中:Access驱动串---------sun.jdbc.odbc.JdbcOdbcDriver MySQL驱动串---------com.mysql.jdbc.D ...