Dining Cows
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 7584   Accepted: 3201

Description

The cows are so very silly about their dinner partners. They have organized themselves into two groups (conveniently numbered 1 and 2) that insist upon dining together in order, with group 1 at the beginning of the line and group 2 at the end. The trouble starts when they line up at the barn to enter the feeding area.

Each cow i carries with her a small card upon which is engraved Di (1 ≤ Di ≤ 2) indicating her dining group membership. The entire set of N (1 ≤ N ≤ 30,000) cows has lined up for dinner but it's easy for anyone to see that they are not grouped by their dinner-partner cards.

FJ's job is not so difficult. He just walks down the line of cows changing their dinner partner assignment by marking out the old number and writing in a new one. By doing so, he creates groups of cows like 112222 or 111122 where the cows' dining groups are sorted in ascending order by their dinner cards. Rarely he might change cards so that only one group of cows is left (e.g., 1111 or 222).

FJ is just as lazy as the next fellow. He's curious: what is the absolute minimum number of cards he must change to create a proper grouping of dining partners? He must only change card numbers and must not rearrange the cows standing in line.

Input

* Line 1: A single integer: N
* Lines 2..N+1: Line i+1 describes cow i's dining preference with a single integer: Di

Output

* Line 1: A single integer that is the minimum number of cards Farmer John must change to assign the cows to eating groups as described.

Sample Input

7
2
1
1
1
2
2
1

Sample Output

2

Source

 

简单dp

比赛没做粗来,大概是脑抽了,恩,比赛就是容易脑抽,啥时候才能正常啊。。。

#include <cstdio>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
#define ll long long
#define _cle(m, a) memset(m, a, sizeof(m))
#define repu(i, a, b) for(int i = a; i < b; i++)
#define MAXN 30005 int d[MAXN][] = {};
int cow[MAXN];
int main()
{
int n;
scanf("%d", &n);
repu(i, , n + ) scanf("%d", &cow[i]);
d[][] = d[][] = ;
d[][cow[]] = ;
repu(i, , n + )
if(cow[i] == ) {
d[i][] = d[i - ][];
d[i][] = min(d[i - ][], d[i - ][]) + ;
}
else {
d[i][] = min(d[i - ][], d[i - ][]);
d[i][] = d[i - ][] + ;
}
printf("%d\n", min(d[n][], d[n][]));
return ;
}

F-Dining Cows(POJ 3671)的更多相关文章

  1. Lost Cows POJ 2182 思维+巧法

    Lost Cows POJ 2182 思维 题意 是说有n头牛,它们身高不一但是排成了一队,从左到右编号为1到n,现在告诉你从第二号开始前面的那些牛中身高小于它的个数,一共有n-1个数.然后求出它们按 ...

  2. 二分-F - Aggressive cows

    F - Aggressive cows Farmer John has built a new long barn, with N (2 <= N <= 100,000) stalls. ...

  3. POJ 3671 Dining Cows (DP,LIS, 暴力)

    题意:给定 n 个数,让你修改最少的数,使得这是一个不下降序列. 析:和3670一思路,就是一个LIS,也可以直接暴力,因为只有两个数,所以可以枚举在哪分界,左边是1,右边是2,更新答案. 代码如下: ...

  4. poj 3671 Dining Cows (Dp)

    /* 一开始并没有想出On的正解 后来发现题解的思路也是十分的巧妙的 还是没能把握住题目的 只有1 2这两个数的条件 dp还带练练啊 ... */ #include<iostream> # ...

  5. Popular Cows (POJ No.2186)

    Description Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= ...

  6. (连通图 缩点 强联通分支)Popular Cows -- poj --2186

    http://poj.org/problem?id=2186 Description Every cow's dream is to become the most popular cow in th ...

  7. Cows POJ - 2481 树状数组

    Farmer John's cows have discovered that the clover growing along the ridge of the hill (which we can ...

  8. POJ3671 Dining Cows

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8126   Accepted: 3441 Description The c ...

  9. F - Truck History - poj 1789

    有一个汽车公司有很多年的汽车制造历史,所以他们会有很多的车型,现在有一些历史学者来研究他们的历史,发现他们的汽车编号很有意思都是有7个小写字母组成的,而且这些小写字母具有一些特别的意义,比如说一个汽车 ...

随机推荐

  1. [SAP ABAP开发技术总结]SD销售订单定价过程

    声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...

  2. 2016.3.22考试(HNOI难度)

    T1 盾盾的打字机 盾盾有一个非常有意思的打字机,现在盾哥要用这台打字机来打出一段文章. 由于有了上次的经验,盾盾预先准备好了一段模板A存在了内存中,并以此为基础来打出文章B.盾盾每次操作可以将内存中 ...

  3. HTTP协议(转自:小坦克博客)

    原文地址:http://www.cnblogs.com/TankXiao/archive/2012/02/13/2342672.html HTTP协议详解 当今web程序的开发技术真是百家争鸣,ASP ...

  4. JPG 批量压缩、 PNG32、PNG24转PNG 透明批量压缩工具 【JPNG】 支持多级目录

    说在最前,压缩不一定是最好的,仅仅是为了方便自己工作需要.主要是手机端图片 算法说明:JPG压缩使用的是  adobe 的 JPGEncoder+ AIR的JPEGEncoderOptions (注 ...

  5. week7团队项目体会

    经过这几个星期以来的软件工程的学习,还有自己在个人项目.结对编程.团队项目的感受,总结了一些感受和理解. 总结收获 首先,一个月的软件工程团队项目的进行让我对软件开发有了比较实际的认识,之前的概念仅限 ...

  6. ZOJ-3725 Painting Storages 动态规划

    题意:给定一个数N,表示有N个位置,要么放置0,要么放置1,问至少存在一个连续的M个1的放置方式有多少? 分析:正面求解可能还要考虑到重复计算带来的影响,该题适应反面求解.设dp[i][j]表示到前 ...

  7. [转载] Linux下高并发socket最大连接数所受的各种限制

    原文: http://mp.weixin.qq.com/s?__biz=MzAwNjMxNjQzNA==&mid=207772333&idx=1&sn=cfc8aadb422f ...

  8. 学习笔记day5:inline inline-block block区别

    1. block元素可以包含block元素和inline元素:但inline元素只能包含inline元素.要注意的是这个是个大概的说法,每个特定的元素能包含的元素也是特定的,所以具体到个别元素上,这条 ...

  9. Linux 中如何卸载已安装的软件

    Linux 中如何卸载已安装的软件. Linux软件的安装和卸载一直是困扰许多新用户的难题.在Windows中,我们可以使用软件自带的安装卸载程序或在控制面板中的“添加/删除程序”来实现.与其相类似, ...

  10. 转:如何学习SQL(第四部分:DBMS扩展功能与SQL高级话题)

    转自:http://blog.163.com/mig3719@126/blog/static/285720652010950102575/ 9. DBMS提供的扩展功能 掌握了基本的关系模型原理和DB ...