来源:LeetCode 258  Add Dights

  Question:Given a non-negative integer  num , repeatedly add all its digits until the result has only one digit.

  For example:

     Given  num =  , the process is like:   + =  ,   + =  . Since    has only one digit, return it.

  Follow up:
     Could you do it without any loop/recursion in O(1) runtime?

  分析

  数字根(digital root)是自然数的一种性质,即每个自然数都有一个数字根。数根是将一自然数的各个位数相加(即横向相加),若加完后的值大于等于10的话,则继续将各位数进行横向相加直到其值小于10为止。例如54817的数根为7,因为5+4+8+1+7=25,25大于10则再加一次,2+5=7,7小于10,则7为54817的数字根。

  上面问题即是求一个非负整数的数字根。很容易想到下面这种方法解决问题:

#include<stdio.h>
#include<assert.h> int addDigits(int num)
{
int temp=;
while(num>=)
{
temp+=(num%);
num/=;
}
temp+=num; //不要忽略最高位数
num=temp;
if(num>=)
{
num=addDigits(num);//num仍大于10,则递归调用addDights函数
}
return num;
} int main()
{
int num;
scanf("%d",&num);
assert(num>=); //非负整数断言
printf("%d\n",addDigits(num));
return ;
}

  注意题目的延伸:要求我们不使用循环/递归复杂度O(1)

  这里用到一个求数字根的公式:    

             

  上述公式的文字表述为:0的数字根为0,9的倍数的数字根为9,其他自然数的数字根为其除以9的余数。证明过程点击这里

  

  上述公式可简单表述为:

  

  所以对于延伸的问题我们可以写出解决方法如下:

#include<stdio.h>
#include<assert.h> int addDigits(int num)
{
return +(num-)%; //直接调用公式
} int main()
{
int num;
scanf("%d",&num);
assert(num>=); //非负整数断言
printf("%d\n",addDigits(num));
return ;
}

  

数字根(digital root)的更多相关文章

  1. 如何证明一个数的数根(digital root)就是它对9的余数?

    数根就是不断地求这个数的各位数之和,直到求到个位数为止.所以数根一定和该数模9同余,但是数根又是大于零小于10的,所以数根模9的余数就是它本身,也就是说该数模9之后余数就是数根. 证明: 假设有一个n ...

  2. 树根 Digital root

    数根 (又称数字根Digital root)是自然数的一种性质.换句话说.每一个自然数都有一个数根.数根是将一正整数的各个位数相加(即横向相加),若加完后的值大于等于10的话,则继续将各位数进行横向相 ...

  3. 1. 数字根(Digital Root)

    数字根(Digital Root)就是把一个自然数的各位数字相加,再将所得数的各位数字相加,直到所得数为一位数字为止.而这个一位数便是原来数字的数字根.例如: 198的数字根为9(1+9+8=18,1 ...

  4. Digital root(数根)

    关于digital root可以参考维基百科,这里给出基本定义和性质. 一.定义 数字根(Digital Root)就是把一个数的各位数字相加,再将所得数的各位数字相加,直到所得数为一位数字为止.而这 ...

  5. digital root问题

    问题阐述会是这样的: Given a non-negative integer num, repeatedly add all its digits until the result has only ...

  6. Codeforces Beta Round #10 C. Digital Root 数学

    C. Digital Root 题目连接: http://www.codeforces.com/contest/10/problem/C Description Not long ago Billy ...

  7. 数学 - SGU 118. Digital Root

    Digital Root Problem's Link Mean: 定义f(n)为n各位数字之和,如果n是各位数,则n个数根是f(n),否则为f(n)的数根. 现在给出n个Ai,求出A1*A2*…*A ...

  8. Digital Root 的推导

    背景 在LeetCode上遇到这道题:Add Digits 大意是给一个数,把它各位数字相加得到一个数,如果这个数小于10就返回,不然继续 addDigits(这个相加得到的数). 题目很简单,但是如 ...

  9. codeforces 10C Digital Root(非原创)

    Not long ago Billy came across such a problem, where there were given three natural numbers A, B and ...

随机推荐

  1. java抽象类与接口的区别及用法

    java抽象类与接口的区别及用法 一.抽象类里面的方法可以有实现,但是接口里面的方法确是只能声明. 二.接口是设计的结果 :抽象类是重构的结果 . 三.java不支持多重继承,所以继承抽象类只能继承一 ...

  2. I.MX6 ubuntu-core-14.04 Apache php mysql Qt5

    /*************************************************************************** * I.MX6 ubuntu-core-14. ...

  3. 使用SCP在命令行传输文件

    下载远程服务器上的文件 scp   root@10.0.10.10:/home/user/download.txt  ./download.txt 上传文件到远程服务器 scp  ./upload.t ...

  4. 简明python教程 --C++程序员的视角(九):函数式编程、特殊类方法、测试及其他

    函数式编程 Lambda exec,eval和assert语句,repr函数   lambda语句 用来创建简短的单行匿名函数 print_assign = lambda name, value: n ...

  5. 图像金字塔及其在 OpenCV 中的应用范例(下)

    前言 本文将主要讲解如何使用 OpenCV 实现图像分割,这也是图像金字塔在 OpenCV 中的一个重要应用. 关于图像分割 在计算机视觉领域,图像分割(Segmentation)指的是将数字图像细分 ...

  6. soapdenovo

    配置文件中的=号两边不能有空格,否则会报错 SOAPdenovo-63mer_v2.0 all -s TongJiN2.config -p 25 -K 63 -d 1 -R  -F -o Lily_2 ...

  7. (实用篇)PHP JSON数组与对象的理解

    在PHP后端和客户端数据交互的过程中,JSON数据中有时格式不定,一会儿是数组,一会儿是对象,弄得客户端开发人员要崩溃的感觉. 因此,前后端相关人员先对PHP的json_encode函数原理有必要的了 ...

  8. Sed Regular Expression

    Today I also used Sed to do some relatively complex job. So I used regular expression. However, the ...

  9. Codeforces Round #303 (Div. 2) C dp 贪心

    C. Woodcutters time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  10. bzoj 1012 维护一个单调数列

    Description 现在请求你维护一个数列,要求提供以下两种操作: 1. 查询操作.语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值.限制:L不超过当前数列的长度. 2. ...