写在前面

由于MLP的实现框架已经非常完善,网上搜到的代码大都大同小异,而且MLP的实现是deeplearning学习过程中较为基础的一个实验。因此完全可以找一份源码以参考,重点在于照着源码手敲一遍,以熟悉pytorch的基本操作。

实验要求

熟悉pytorch的基本操作:用pytorch实现MLP,并在MNIST数据集上进行训练

环境配置

实验环境如下:

  • Win10
  • python3.8
  • Anaconda3
  • Cuda10.2 + cudnn v7
  • GPU : NVIDIA GeForce MX250

配置环境的过程中遇到了一些问题,解决方案如下:

  1. anaconda下载过慢

    使用清华镜像源,直接百度搜索即可

  2. pytorch安装失败

    这里我首先使用的是pip的安装方法,失败多次后尝试了使用anaconda,然后配置了清华镜像源,最后成功。参考的教程如下:

    win10快速安装pytorch,清华镜像源

    当然也可以直接去pytorch官网下载所需版本的whl文件,然后手动pip安装。由于这种方式我已经学会了,为了学习anaconda,所以没有采用这种方式。具体方式可以百度如何使用whl。顺便贴下pytorch的whl的下载页面

注意:pytorch的版本是要严格对应是否使用GPU、python版本、cuda版本的,如需手动下载pytorch的安装包,需搞懂其whl文件的命名格式

另外还学习了anaconda的一些基本操作与原理,参考如下:

Anaconda完全入门指南

实验过程

最终代码见github:hit-deeplearning-1

首先设置一些全局变量,加载数据。batch_size决定了每次向网络中输入的样本数,epoch决定了整个数据集的迭代次数,具体作用与大小如何调整可参考附录中的博客。

将数据读入,如果数据不存在于本地,则可以自动从网上下载,并保存在本地的data文件夹下。

#一次取出的训练样本数
batch_size = 16
# epoch 的数目
n_epochs = 10 #读取数据
train_data = datasets.MNIST(root="./data", train=True, download=True,transform=transforms.ToTensor())
test_data = datasets.MNIST(root="./data", train=False, download=True, transform=transforms.ToTensor())
#创建数据加载器
train_loader = torch.utils.data.DataLoader(train_data, batch_size = batch_size, num_workers = 0)
test_loader = torch.utils.data.DataLoader(test_data, batch_size = batch_size, num_workers = 0)

接下来是创建MLP模型,关于如何创建一个模型,可以参考附录中的博客,总之创建模型模板,训练模板都是固定的。

其中LinearviewCrossEntropyLossSGD的用法需重点关注。查看官方文档或博客解决。

这两条语句将数据放到了GPU上,同理测试的时候也要这样做。

data = data.cuda()
target = target.cuda()
class MLP(nn.Module):
def __init__(self):
#继承自父类
super(MLP, self).__init__()
#创建一个三层的网络
#输入的28*28为图片大小,输出的10为数字的类别数
hidden_first = 512
hidden_second = 512
self.first = nn.Linear(in_features=28*28, out_features=hidden_first)
self.second = nn.Linear(in_features=hidden_first, out_features=hidden_second)
self.third = nn.Linear(in_features=hidden_second, out_features=10) def forward(self, data):
#先将图片数据转化为1*784的张量
data = data.view(-1, 28*28)
data = F.relu(self.first(data))
data = F.relu((self.second(data)))
data = F.log_softmax(self.third(data), dim = 1) return data def train():
# 定义损失函数和优化器
lossfunc = torch.nn.CrossEntropyLoss().cuda()
#lossfunc = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(params=model.parameters(), lr=0.01)
# 开始训练
for epoch in range(n_epochs):
train_loss = 0.0
for data, target in train_loader:
optimizer.zero_grad()
#将数据放至GPU并计算输出
data = data.cuda()
target = target.cuda()
output = model(data)
#计算误差
loss = lossfunc(output, target)
#反向传播
loss.backward()
#将参数更新至网络中
optimizer.step()
#计算误差
train_loss += loss.item() * data.size(0)
train_loss = train_loss / len(train_loader.dataset)
print('Epoch: {} \tTraining Loss: {:.6f}'.format(epoch + 1, train_loss))
# 每遍历一遍数据集,测试一下准确率
test()
#最后将模型保存
path = "model.pt"
torch.save(model, path)

test程序不再贴出,直接调用了一个很常用的test程序。

最后是主程序,在这里将模型放到GPU上。

model = MLP()
#将模型放到GPU上
model = model.cuda()
train()

实验结果

实验结果如下,可以看到,当对数据迭代训练十次时,准确率已经可以达到97%

分别运行了两次,第一次没有使用cuda加速,第二次使用了cuda加速,任务管理器分别显示如下:

可以看到,未使用cuda加速时,cpu占用率达到了100%,而GPU的使用率为0;而使用cuda加速时,cpu占用率只有49%,而GPU使用率为1%。这里GPU使用率较低的原因很多,比如我程序中batch_size设置的较小,另外只将数据和模型放到了GPU上,cpu上仍有部分代码与数据。经简单测试,使用cuda的训练时间在2:30左右,不使用cuda的训练时间在3:40左右。

参考博客

使用Pytorch构建MLP模型实现MNIST手写数字识别

如何创建自定义模型

pytorch教程之nn.Module类详解——使用Module类来自定义网络层

epoch和batch是什么

深度学习 | 三个概念:Epoch, Batch, Iteration

如何用GPU加速

从头学pytorch(十三):使用GPU做计算

PyTorch如何使用GPU加速(CPU与GPU数据的相互转换)

保存模型

PyTorch模型保存与加载

pytorch实现MLP并在MNIST数据集上验证的更多相关文章

  1. MNIST数据集上卷积神经网络的简单实现(使用PyTorch)

    设计的CNN模型包括一个输入层,输入的是MNIST数据集中28*28*1的灰度图 两个卷积层, 第一层卷积层使用6个3*3的kernel进行filter,步长为1,填充1.这样得到的尺寸是(28+1* ...

  2. caffe在windows编译project及执行mnist数据集測试

    caffe在windows上的配置和编译能够參考例如以下的博客: http://blog.csdn.net/joshua_1988/article/details/45036993 http://bl ...

  3. TersorflowTutorial_MNIST数据集上简单CNN实现

    MNIST数据集上简单CNN实现 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 Tensorflow机器学习实战指南 源代码请点击下方链接欢迎加星 Tesorflow实现基于MNI ...

  4. 【转载】用Scikit-Learn构建K-近邻算法,分类MNIST数据集

    原帖地址:https://www.jiqizhixin.com/articles/2018-04-03-5 K 近邻算法,简称 K-NN.在如今深度学习盛行的时代,这个经典的机器学习算法经常被轻视.本 ...

  5. pytorch 加载mnist数据集报错not gzip file

    利用pytorch加载mnist数据集的代码如下 import torchvision import torchvision.transforms as transforms from torch.u ...

  6. PyTorch迁移学习-私人数据集上的蚂蚁蜜蜂分类

    迁移学习的两个主要场景 微调CNN:使用预训练的网络来初始化自己的网络,而不是随机初始化,然后训练即可 将CNN看成固定的特征提取器:固定前面的层,重写最后的全连接层,只有这个新的层会被训练 下面修改 ...

  7. 基于Keras 的VGG16神经网络模型的Mnist数据集识别并使用GPU加速

    这段话放在前面:之前一种用的Pytorch,用着还挺爽,感觉挺方便的,但是在最近文献的时候,很多实验都是基于Google 的Keras的,所以抽空学了下Keras,学了之后才发现Keras相比Pyto ...

  8. SGD与Adam识别MNIST数据集

    几种常见的优化函数比较:https://blog.csdn.net/w113691/article/details/82631097 ''' 基于Adam识别MNIST数据集 ''' import t ...

  9. MXNet学习-第一个例子:训练MNIST数据集

    一个门外汉写的MXNET跑MNIST的例子,三层全连接层最后验证率是97%左右,毕竟是第一个例子,主要就是用来理解MXNet怎么使用. #导入需要的模块 import numpy as np #num ...

随机推荐

  1. SpringBoot 集成Web

    1,静态资源访问: 在我们开发Web应用的时候,需要引用大量的js.css.图片等静态资源. 默认配置 Spring Boot默认提供静态资源目录位置需置于classpath下,目录名需符合如下规则: ...

  2. Codeforces题解集 1.0

    记录 Codeforces 2019年12月19日到 2020年2月12日 的部分比赛题 Educational Codeforces Round 82 (Rated for Div. 2) D Fi ...

  3. python opencv 图片缺陷检测(讲解直方图以及相关系数对比法)

    一.利用直方图的方式进行批量的图片缺陷检测(方法简单) 二.步骤(完整代码见最后) 2.1灰度转换(将原图和要检测对比的图分开灰度化) 灰度化的作用是因为后面的直方图比较需要以像素256为基准进行相关 ...

  4. PostgreSql 自定义函数:批量调整某个字段长度

    CREATE or replace FUNCTION alterColumn(cloumnName VARCHAR(32), out v_retcode text)AS$BODY$ declare r ...

  5. Math常用方法

    <!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>& ...

  6. vue中keepAlive的用法[返回页面不刷新]

    本文转载于時間蒼白了誓言_49b9 使用vue单页开发项目时遇到一个问题:在列表页进入详情页,按返回键返回列表页时页面刷新了,用户体验非常差啊!!!查阅了一下相关问题,使用解决这个问题,下面是我的使用 ...

  7. vs code 关闭保存自动格式化 formatonsave - [vscode] - [html]

    有时候Ctrl+s保存,html代码哥格式会紊乱. 造成这个原因一般是我们基本都在用的一个插件: ![](https://img2018.cnblogs.com/blog/1735896/201912 ...

  8. centos8系统下docker安装jenkins

    前提是已经安装好docker 1.下载jenkins(最新版本) docker pull jenkins/jenkins 2.创建用于存放jenkins的文件夹 mkdir /home/var/jen ...

  9. find的基本查询命令《一》

    一. find的基本查询命令 find命令最常用的是查找某个文件,如: find ./ -name "abc.txt" 则会在当前目录及子目录下查找abc.txt文件 更常用的是查 ...

  10. 个推push数据统计(爬虫)

    该方案基于任务调度框架Gearman,采用Python开发的分布式数据统计系统. 项目的目录结构很简单: # apple at localhost in ~/Develop/getui [11:24: ...