Java实现 LeetCode 509 斐波那契数
509. 斐波那契数
斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
给定 N,计算 F(N)。
示例 1:
输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1.
示例 2:
输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2.
示例 3:
输入:4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3.
提示:
0 ≤ N ≤ 30
PS:
第一个比较简单,
第二个是用黄金分割求斐波那契
第三个是矩阵求斐波那契
class Solution {
public int fib(int N) {
// if (N == 0 || N == 1) {
// return N;
// }
// int x = 0,y = 1,z = 1,i = 0,end = N-2;
// while (i <= end) {
// z = x + y;
// x = y;
// y = z;
// i++;
// }
// return z;
// double goldenRatio = (1 + Math.sqrt(5)) / 2;
// return (int)Math.round(Math.pow(goldenRatio, N)/ Math.sqrt(5));
if (N <= 1) {
return N;
}
int[][] A = new int[][]{{1, 1}, {1, 0}};
matrixPower(A, N-1);
return A[0][0];
}
void matrixPower(int[][] A, int N) {
if (N <= 1) {
return;
}
matrixPower(A, N/2);
multiply(A, A);
int[][] B = new int[][]{{1, 1}, {1, 0}};
if (N%2 != 0) {
multiply(A, B);
}
}
void multiply(int[][] A, int[][] B) {
int x = A[0][0] * B[0][0] + A[0][1] * B[1][0];
int y = A[0][0] * B[0][1] + A[0][1] * B[1][1];
int z = A[1][0] * B[0][0] + A[1][1] * B[1][0];
int w = A[1][0] * B[0][1] + A[1][1] * B[1][1];
A[0][0] = x;
A[0][1] = y;
A[1][0] = z;
A[1][1] = w;
}
}
Java实现 LeetCode 509 斐波那契数的更多相关文章
- LeetCode.509——斐波那契数
问题描述: 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) ...
- leetcode 509. 斐波那契数
问题描述 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) ...
- 力扣(LeetCode) 509. 斐波那契数
斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) = F(N ...
- 【LeetCode】509. 斐波那契数
题目 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) = ...
- leetcode 509斐波那契数列
递归方法: 时间O(2^n),空间O(logn) class Solution { public: int fib(int N) { ?N:fib(N-)+fib(N-); } }; 递归+记忆化搜索 ...
- LeetCode_509.斐波那契数
LeetCode-cn_509 509.斐波那契数 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) ...
- 算法笔记_001:斐波那契数的多种解法(Java)
本篇文章解决的问题来源于算法设计与分析课程的课堂作业,主要是运用多种方法来计算斐波那契数.具体问题及解法如下: 一.问题1: 问题描述:利用迭代算法寻找不超过编程环境能够支持的最大整数的斐波那契数是第 ...
- Java 兔子问题(斐波那契数列)扩展篇
Java兔子问题(斐波那契数列)扩展篇 斐波那契数列指的是这样一个数列 0, 1, 1, 2,3, 5, 8, 13, 21, 34, 55, 89, 144, ...对于这个数列仅仅能说将兔子生产周 ...
- LeetCode(509. 斐波那数)
问题描述: 斐波那契数,通常用 F(n) 表示,形成的序列称为斐波那契数列.该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和.也就是: F(0) = 0, F(1) = 1 F(N) ...
随机推荐
- CF-448C Painting Fence 分治
Painting fence 题意 乍一看以为是之前做过的一道单调队列优化的DP,不是. 也是有n块木板,每个木板宽1米,有一个高度ai,现在要把他们刷成橘色,给了你一个宽一米的刷子,你可以横着刷,或 ...
- [codeforces525D]BFS
题目大意: 给定一个包含'.'和'*'的地图,每次操作可以把'*'->'.',用最少的操作使得新图满足条件:所有的连通块为矩形('.'为可达点) 解法: 用bfs来模拟操作的过程,对于一个2*2 ...
- 使用 PyCharm 添加 Django 项目
一.前置准备(PyCharm与Python的下载,已有的跳过) 1.首先下载PyCharm 地址:http://www.jetbrains.com/pycharm/ 2.然后下载Python 地址:h ...
- shell 光标处理快捷键
Ctrl+左右键 单词之间跳转Ctrl+a跳到本行的行首, Ctrl+e则跳到页尾. Ctrl+u删除当前光标前面的文字 ctrl+k-删除当前光标后面的文字 Ctrl+w和Alt+d-对于当前的单词 ...
- shiro 实现自定义权限规则校验
<span style="font-family: Arial, Helvetica, sans-serif;">在系统中使用shiro进行权限管理,当用户访问没有权限 ...
- springmvc 校验---spring校验
springmvc提供了灵活的可拓展的校验方式,根据不同的项目可选择适合的校验方式,首先介绍下springmvc中内置的校验实现方式! 1.实现 org.springframework.validat ...
- openjdk tomcat 安装
1 jdk 这里用openjdk yum install java-1.6.0-openjdk export JAVA_HOME=/usr/lib/jvm/java-1.6.0-openjdk-1.6 ...
- 对CSS3中的transform:Matrix()矩阵的一些理解
只要有CSS基础的人肯定都知道,我们可以通过transform中的translate,scale,rotate,skew这些方法来控制元素的平移,缩放,旋转,斜切,其实这些方法呢都是为了便于开发者使用 ...
- MySQL索引及查询优化
mysql 索引 1.索引介绍 索引按数据结构分可分为哈希表,有序数组,搜索树,跳表: 哈希表适用于只有等值查询的场景 有序数组适用于有等值查询和范围查询的场景,但有序数组索引的更新代价很大,所以最好 ...
- ie ajax 跨域情况遇到的各种问题
jQuery.support.cors = true; http://blog.csdn.net/jupiter37/article/details/25694289 jQuery ajax跨域调用出 ...