Codeforces Round #628 (Div. 2) 题解
人闲桂花落,夜静春山空。
月出惊山鸟,时鸣春涧中。——王维
A. EhAb AnD gCd
You are given a positive integer x. Find any such 2 positive integers a and b such that GCD(a,b)+LCM(a,b)=x.
As a reminder, GCD(a,b) is the greatest integer that divides both a and b. Similarly, LCM(a,b) is the smallest integer such that both a and b divide it.
It's guaranteed that the solution always exists. If there are several such pairs (a,b), you can output any of them.
Input
The first line contains a single integer t (1≤t≤100) — the number of testcases.
Each testcase consists of one line containing a single integer, x
(2≤x≤10^9).
Output
For each testcase, output a pair of positive integers a and b (1≤a,b≤109) such that GCD(a,b)+LCM(a,b)=x. It's guaranteed that the solution always exists.
If there are several such pairs (a,b), you can output any of them.
Example
input
2
2
14
output
1 1
6 4
Note
In the first testcase of the sample, GCD(1,1)+LCM(1,1)=1+1=2.
In the second testcase of the sample, GCD(6,4)+LCM(6,4)=2+12=14.
题目大意:给定正整数x,找到两个正整数a、b,使得GCD(a,b) + LCM(a,b) = x。
显然,这道题只需要求一可行解即可,并非需要数论进行思考。
考虑:1,x - 1,满足题意。
代码:
#include<iostream>
#include<cstdio>
using namespace std;
int main()
{
int T;
scanf("%d", &T);
while(T --)
{
int x;
scanf("%d", &x);
printf("1 %d\n", x - 1);
}
return 0;
}
B. CopyCopyCopyCopyCopy
Ehab has an array a of length n. He has just enough free time to make a new array consisting of n copies of the old array, written back-to-back. What will be the length of the new array's longest increasing subsequence?
A sequence a is a subsequence of an array b if a can be obtained from b by deletion of several (possibly, zero or all) elements.The longest increasing subsequence of an array is the longest subsequence such that its elements are ordered in strictly increasing order.
Input
The first line contains an integer t — the number of test cases you need to solve. The description of the test cases follows.
The first line of each test case contains an integer n (1≤n≤105) — the number of elements in the array a.
The second line contains n space-separated integers a1, a2, …, an
(1≤ai≤109)
— the elements of the array a.
The sum of n across the test cases doesn't exceed 105.
Output
For each testcase, output the length of the longest increasing subsequence of a if you concatenate it to itself n times.
Example
input
2
3
3 2 1
6
3 1 4 1 5 9
output
3
5
Note
In the first sample, the new array is [3,2,1,3,2,1,3,2,1]. The longest increasing subsequence is marked in bold.
In the second sample, the longest increasing subsequence will be [1,3,4,5,9].
保证严格单调递增的选取方法:排序、去重。
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn = 300000 + 5;
int n, a[maxn];
int main()
{
int T, cnt = 0;
scanf("%d", &T);
while(T --)
{
scanf("%d", &n);
for(int i = 0; i < n; ++ i)
scanf("%d", &a[i]);
sort(a, a + n);
for(int i = 0; i < n; ++ i)
if(!i || a[i] != a[i - 1]) ++ cnt;
printf("%d\n", cnt);
memset(a, 0, sizeof(a));
cnt = 0;
}
return 0;
}
C. Ehab and Path-etic MEXs
You are given a tree consisting of n nodes. You want to write some labels on the tree's edges such that the following conditions hold:
Every label is an integer between 0 and n−2 inclusive.
All the written labels are distinct.
The largest value among MEX(u,v) over all pairs of nodes (u,v) is as small as possible.
Here, MEX(u,v) denotes the smallest non-negative integer that isn't written on any edge on the unique simple path from node u to node v.
Input
The first line contains the integer n
(2≤n≤10^5)
— the number of nodes in the tree.
Each of the next n−1 lines contains two space-separated integers u and v (1≤u,v≤n) that mean there's an edge between nodes u and v. It's guaranteed that the given graph is a tree.
Output
Output n−1 integers. The ith of them will be the number written on the ith edge (in the input order).
Examples
input
3
1 2
1 3
output
0
1
input
6
1 2
1 3
2 4
2 5
5 6
output
0
3
2
4
1
Note
The tree from the second sample:

我当时思路是这样子:如果一条边出现在所有路径中的次数多于另一条边,那么它的边权成为为价值的最大值就更不容易。
因为它出现次数最多,意味着多数情况下路径的价值不用考虑它。
因此,我们就对这棵树每条边计算它的出现次数,排序;次数多的分支越应该优先填大的数。
代码:
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cstdio>
#include<cmath>
#define pil pair <int, long long>
#define maxn 3000000 + 5
using namespace std;
vector <int> G[maxn];
pil table[maxn];
int n, size[maxn] = {}, ans[maxn] = {}, fa[maxn] = {};
int input[maxn][2];
bool cmp(pil x, pil y)
{
return x.second < y.second;
}
void dfs(int Fa, int x)
{
fa[x] = Fa;
for(int i = 0; i < G[x].size(); ++ i)
{
int v = G[x][i];
if(v != Fa)
{
dfs(x, v);
size[x] += size[v];
}
}
++ size[x];
return;
}
int main()
{
scanf("%d", &n);
for(int i = 1; i <= n; ++ i) G[i].clear();
for(int i = 1; i < n; ++ i)
{
scanf("%d %d", &input[i][0], &input[i][1]);
G[input[i][1]].push_back(input[i][0]);
G[input[i][0]].push_back(input[i][1]);
}
dfs(0, 1);
for(int i = 1; i < n; ++ i)
{
int x = input[i][0], y = input[i][1];
table[i].first = i;
if(fa[x] == y) table[i].second = (long long) size[x] * (n - size[x]);
else
{
table[i].second = (long long) size[y] * (n - size[y]);
}
}
sort(table + 1, table + n, cmp);
for(int i = 1; i < n; ++ i) ans[table[i].first] = i;
for(int i = 1; i < n; ++ i)
printf("%d\n", ans[i] - 1);
return 0;
}
D. Ehab the Xorcist
Given 2 integers u and v, find the shortest array such that bitwise-xor of its elements is u, and the sum of its elements is v.
Input
The only line contains 2 integers u and v (0≤u,v≤1018).
Output
If there's no array that satisfies the condition, print "-1". Otherwise:
The first line should contain one integer, n, representing the length of the desired array. The next line should contain n positive integers, the array itself. If there are multiple possible answers, print any.
Examples
input
2 4
output
2
3 1
input
1 3
output
3
1 1 1
input
8 5
output
-1
input
0 0
output
0
Note
In the first sample, 3⊕1=2 and 3+1=4. There is no valid array of smaller length.
Notice that in the fourth sample the array is empty.
这道题我第一反应使用搜索。
...
迭代加深搜索啊!!
...
怎么剪枝??
...
其实,如果加上剪枝,效率依旧不如以下做法:
考虑d = v - u,若d < 0 或者 d是奇数,输出-1。
为什么?因为数的累和>=异或和,而第一位数相加与异或的结果应该是一样的,因此u和v奇偶性相同。
再考虑:让第一个数是u,再让后两个数与第一个数凑出v,后两个数异或和为0;
不难想到:a = u,b = d / 2,c = d / 2;
由于d一定为偶数,刚刚讲过了,满足题意。
那么是否存在两个解呢?
a = u + d / 2,b = d / 2,如果a和b异或值等于v,即满足题意。
如果d = 0,那么仅需要a即可。
如果u = v = 0,则不需要啦。
代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
long long u, v, d;
int main()
{
scanf("%lld %lld", &u, &v);
d = v - u;
if(d < 0 || d & 1) puts("-1");
else
{
if(d == 0)
{
if(u == 0)
{
puts("0");
}
else
{
puts("1");
printf("%lld\n", v);
}
return 0;
}
if(((u + (d >> 1)) ^ (d >> 1)) == u)
{
puts("2");
printf("%lld %lld\n", u + (d >> 1), d >> 1);
return 0;
}
puts("3");
printf("%lld %lld %lld\n", u, d >> 1, d >> 1);
}
return 0;
}
Codeforces Round #628 (Div. 2) 题解的更多相关文章
- Codeforces Round #182 (Div. 1)题解【ABCD】
Codeforces Round #182 (Div. 1)题解 A题:Yaroslav and Sequence1 题意: 给你\(2*n+1\)个元素,你每次可以进行无数种操作,每次操作必须选择其 ...
- Codeforces Round #608 (Div. 2) 题解
目录 Codeforces Round #608 (Div. 2) 题解 前言 A. Suits 题意 做法 程序 B. Blocks 题意 做法 程序 C. Shawarma Tent 题意 做法 ...
- Codeforces Round #525 (Div. 2)题解
Codeforces Round #525 (Div. 2)题解 题解 CF1088A [Ehab and another construction problem] 依据题意枚举即可 # inclu ...
- Codeforces Round #528 (Div. 2)题解
Codeforces Round #528 (Div. 2)题解 A. Right-Left Cipher 很明显这道题按题意逆序解码即可 Code: # include <bits/stdc+ ...
- Codeforces Round #466 (Div. 2) 题解940A 940B 940C 940D 940E 940F
Codeforces Round #466 (Div. 2) 题解 A.Points on the line 题目大意: 给你一个数列,定义数列的权值为最大值减去最小值,问最少删除几个数,使得数列的权 ...
- Codeforces Round #677 (Div. 3) 题解
Codeforces Round #677 (Div. 3) 题解 A. Boring Apartments 题目 题解 简单签到题,直接数,小于这个数的\(+10\). 代码 #include &l ...
- Codeforces Round #665 (Div. 2) 题解
Codeforces Round #665 (Div. 2) 题解 写得有点晚了,估计都官方题解看完切掉了,没人看我的了qaq. 目录 Codeforces Round #665 (Div. 2) 题 ...
- Codeforces Round #160 (Div. 1) 题解【ABCD】
Codeforces Round #160 (Div. 1) A - Maxim and Discounts 题意 给你n个折扣,m个物品,每个折扣都可以使用无限次,每次你使用第i个折扣的时候,你必须 ...
- Codeforces Round #383 (Div. 2) 题解【ABCDE】
Codeforces Round #383 (Div. 2) A. Arpa's hard exam and Mehrdad's naive cheat 题意 求1378^n mod 10 题解 直接 ...
随机推荐
- FZU - 2204 简单环形dp
FZU - 2204 简单环形dp 题目链接 n个有标号的球围成一个圈.每个球有两种颜色可以选择黑或白染色.问有多少种方案使得没有出现连续白球7个或连续黑球7个. 输入 第一行有多组数据.第一行T表示 ...
- 如何将MagicaVoxel模型导入UE4中(2)
前言 当可以把MagicaVoxel的静态模型导入到UE4后,我又开始不满足了.默认第三人称蓝图的"汽车碰撞人偶(雾)"与场景中的体素画风格格不入,于是,我便想着用自己建造的体素画 ...
- springboot 启动时执行方法
Springboot提供了两种“开机启动”某些方法的方式:ApplicationRunner和CommandLineRunner.下面简单介绍下ApplicationRunner 1.创建个Tests ...
- jmeter执行多条sql语句
1.JDBC Connection Configuration 在配置DataBase URL的时候,加上allowMultiQueries=true 2.在JDBC Request中设置Quer T ...
- java/php DES/CBC/PKCS5Padding加密解密算法实现过程
先看java代码 public static String encrypt(String message, String key) throws Exception { Cipher cipher = ...
- 路由与交换,cisco路由器配置,基础知识点(二)
1.进退用户/特权/全局模式 (1)从用户模式进入特权模式 enable (2)从特权模式进入全局配置模式 configure terminal (3)从其他模式回到特权模式 end (4)从特权模式 ...
- 中阶d01-- web前端 html css js bootstrap
html 页面骨架结构css 页面优化js(脚本语言) 页面和用户互动 bootstrap 前端框架,主要实现不同设备直接打开页面时播放比例设置(全屏暂时,不要滚动条)
- 8.4 StringBuilder的介绍及用法(String 和StringBuilder区别)
* StringBuilder:是一个可变的字符串.字符串缓冲区类.** String和StringBuilder的区别:* String的内容是固定的.(方法区的内容)* StringBuilder ...
- coding++:漫画版-了解什么是分布式事务?
————— 第二天 ————— ———————————— 假如没有分布式事务: 在一系列微服务系统当中,假如不存在分布式事务,会发生什么呢?让我们以互联网中常用的交易业务为例子: 上图中包含了库存 ...
- Spire.Cloud 私有化部署教程(二)- Ubuntu 18.04 系统
本教程主要介绍如何在Ubuntu 18.04系统上实现Spire.Cloud私有化部署.CentOS 7系统部署请参考 这篇教程. 详细步骤如下: 一.环境配置 1.关闭防火墙 1)首先查看防火墙状态 ...