A. You Are Given Two Binary Strings…
A. You Are Given Two Binary Strings…
You are given two binary strings x and y, which are binary representations of some two integers (let’s denote these integers as f(x) and f(y)). You can choose any integer k≥0, calculate the expression sk=f(x)+f(y)⋅2k and write the binary representation of sk in reverse order (let’s denote it as revk). For example, let x=1010 and y=11; you’ve chosen k=1 and, since 21=102, so sk=10102+112⋅102=100002 and revk=00001.
For given x and y, you need to choose such k that revk is lexicographically minimal (read notes if you don’t know what does “lexicographically” means).
It’s guaranteed that, with given constraints, k exists and is finite.
Input
The first line contains a single integer T (1≤T≤100) — the number of queries.
Next 2T lines contain a description of queries: two lines per query. The first line contains one binary string x, consisting of no more than 105 characters. Each character is either 0 or 1.
The second line contains one binary string y, consisting of no more than 105 characters. Each character is either 0 or 1.
It’s guaranteed, that 1≤f(y)≤f(x) (where f(x) is the integer represented by x, and f(y) is the integer represented by y), both representations don’t have any leading zeroes, the total length of x over all queries doesn’t exceed 105, and the total length of y over all queries doesn’t exceed 105.
Output
Print T integers (one per query). For each query print such k that revk is lexicographically minimal.
Example
input
4
1010
11
10001
110
1
1
1010101010101
11110000
output
1
3
0
0
题意:给你两个二进制数字x,y,让你选择一个数字k,存在公式 sk = x + y * 2^k ,定义revk是sk的倒序,求能 使得revk字典序最小 的k值。
大佬的思路:https://blog.csdn.net/weixin_43334251/article/details/98940717
题目乍一看非常难懂的亚子,其实2^k有妙用,从二进制的角度来看,其实你选的k值是多少,就是让y左移多少位罢了。然后我们可以发现,其实只要让y串最后一个1(从左往右数),去对准x串中最近的一个1就好了。下面举一个例子:
输入x为10001, y为110,

我们可以看到y的最后一个1对准了x的0,由于我们的y串只能左移,也就是在后面加0。而y串最后一个1距离x串最近的一个1还差3距离,所以我们把y串左移3位,也就是k值取3可以得到下图:
这个时候通过公式得到的revk就是最小字典序了。
#include<iostream>
#include<string.h>
#include<string>
#include<algorithm>
#include<math.h>
#include<string>
#include<string.h>
#include<vector>
#include<utility>
#include<map>
#include<queue>
#include<set>
#define mx 0x3f3f3f3f
#define ll long long
using namespace std;
string s1,s2;
int main()
{
int n;
cin>>n;
while(n--)
{
cin>>s1>>s2;
int len1=s1.length();
int len2=s2.length();
int pos=;
for(int i=len2-;s2[i];i--)
{
pos++;
if(s2[i]=='')
break;
}
int cnt=;
for(int i=len1-pos;s1[i];i--)
{
if(s1[i]=='')
break;
cnt++;
}
cout<<cnt<<endl;
}
return ;
}
A. You Are Given Two Binary Strings…的更多相关文章
- [CC-BSTRLCP]Count Binary Strings
[CC-BSTRLCP]Count Binary Strings 题目大意: 对于一个长度为\(n\)的\(\texttt0/\texttt1\)串\(S\),如果存在一个切分\(i\),使得\(S_ ...
- Binary Strings Gym - 101161G 矩阵快速幂 + 打表
http://codeforces.com/gym/101161/attachments 这题通过打表,可以知道长度是i的时候的合法方案数. 然后得到f[1] = 2, f[2] = 3, f[3] ...
- codeforces gym #101161G - Binary Strings(矩阵快速幂,前缀斐波那契)
题目链接: http://codeforces.com/gym/101161/attachments 题意: $T$组数据 每组数据包含$L,R,K$ 计算$\sum_{k|n}^{}F(n)$ 定义 ...
- [LeetCode] 415 Add Strings && 67 Add Binary && 43 Multiply Strings
这些题目是高精度加法和高精度乘法相关的,复习了一下就做了,没想到难住自己的是C++里面string的用法. 原题地址: 415 Add Strings:https://leetcode.com/pro ...
- [LeetCode] Add Binary 二进制数相加
Given two binary strings, return their sum (also a binary string). For example,a = "11"b = ...
- 【leetcode】Add Binary
题目简述: Given two binary strings, return their sum (also a binary string). For example, a = "11&q ...
- leetcode解题:Add binary问题
顺便把之前做过的一个简单难度的题也贴上来吧 67. Add Binary Given two binary strings, return their sum (also a binary strin ...
- Leetcode Add Binary
Given two binary strings, return their sum (also a binary string). For example,a = "11"b = ...
- [LintCode] Add Binary 二进制数相加
Given two binary strings, return their sum (also a binary string). Have you met this question in a r ...
随机推荐
- mysql免安装版配置启动时出错
今天安装了MySQL5.7的免安装版本,启动时报了服务无法启动的错误,在网上找了好久终于找到了解决方法 我找到解决方法的博客地址是:http://blog.csdn.net/qq_27093465/a ...
- web前端安全性
跨站脚本攻击(XSS攻击) XSS(Cross Site Scripting),跨站脚本攻击.XSS是常见的Web攻击技术之一.所谓的跨站脚本攻击指得是:恶意攻击者往Web页面里注入恶意Script代 ...
- 「JSOI2015」子集选取
「JSOI2015」子集选取 传送门 看到这个数据范围,就知道肯定是要找规律. 如果把集合看成一个长度为 \(n\) 的 \(01\) 串, \(0\) 表示没有这个元素, \(1\) 表示有这个元素 ...
- 排序算法之选择排序的python实现
选择排序算法的工作原理如下: 1. 首先在序列中找到最小或最大元素,存放到排序序列的前或后. 2. 然后,再从剩余元素中继续寻找最小或最大元素. 3. 然后放到已排序序列的末尾. 4. 以此类推,直到 ...
- Django框架之模板路径及静态文件路径配置
内容: (1)模板文件路径的配置 (2)静态文件路径的配置 一.模板文件路径的配置 模板文件主要通过jinja2模板进行渲染html页面,实现动态页面. 步骤一:创建一个template的文件夹,用于 ...
- Linux重装为Windows后读取原EXT类型数据盘
Linux重装为Windows后读取原EXT类型数据盘 1 2 3 4 分步阅读 Windows的文件系统通常使用NTFS或者FAT32格式,而Linux的文件系统格式通常是EXT系列.当操作系统从L ...
- Thread线程
1.什么是线程? 线程( Thread ) 被称作轻量级进程( Lightweight Process ),线程是比进程更小一级的执行单元. 一个进程可以有多个线程,但至少有一个线程(当进程被初始化后 ...
- 【原】mac电脑使用总结
mac下终端配置(item2+oh-my-zsh)+solarized配色方案:https://www.cnblogs.com/weixuqin/p/7029177.html
- if条件语句!
1.if 单分支语句 if [ 条件语句 ] then 条件操作fi 例子: [root@localhost ~]# if [ 1 -eq 0 ] //如果1等 ...
- 1. Elasticsearch startup on local
Download: https://www.elastic.co/downloads/elasticsearch 2. Setting: 1. [elasticsearch]\config\elast ...