POJ 3463 Sightseeing 【最短路与次短路】
题目
Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.
Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.
There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.
Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.
M lines, each with three integers A, B and L, separated by single spaces, with 1 ≤ A, B ≤ N, A ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.
The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.
One line with two integers S and F, separated by a single space, with 1 ≤ S, F ≤ N and S ≠ F: the starting city and the final city of the route.
There will be at least one route from S to F.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.
Sample Input
2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1
Sample Output
3
2
Hint
The first test case above corresponds to the picture in the problem description.
分析
这个题大概的意思就是旅行团为了省油走最短路或者比最短路长1的路,然后问有几条路满足条件。
直接用dijkstra算出最短路和次短路,数组开二维来维护最短路和次短路。
更新条件:
1,起点到x距离小于最小距离,那么两个都要更新。
2,距离小于次小,更新次小距离。
3,这个距离与最小或者相等,方法数+1。
在运行Dijkstra时,因为最小和次小都要查找,一个是n-1次,另一个需要n次遍历,所以一共循环2n-1次。
代码
#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; const int maxe=;
const int maxn=;
const int Inf=0x3f3f3f3f; struct Edge{
int to,next;
int v;
}e[maxn<<]; int n,m,cnt,head[maxe];
int cdis[maxe][],dis[maxe][],vis[maxe][];
int mdd,des; void adde(int u,int v,int w){
e[cnt].to=v;
e[cnt].v=w;
e[cnt].next=head[u];
head[u]=cnt++;
} void Dijkstra(){
memset(vis,,sizeof(vis));
memset(cdis,,sizeof(cdis));
for(int i=;i<=n;i++){
dis[i][]=Inf;
dis[i][]=Inf;
}
dis[mdd][]=;
cdis[mdd][]=;
int k,tmp,flag;
for(int i=;i<=*n-;i++){
tmp=Inf;
for(int j=;j<=n;j++)
if(!vis[j][] && tmp>dis[j][]){
k=j;
flag=;
tmp=dis[j][];
}else if(!vis[j][] && tmp>dis[j][]){
k=j;
flag=;
tmp=dis[j][];
}
if(tmp==Inf)
break;
vis[k][flag]=;
for(int j=head[k];j!=-;j=e[j].next){
int v=e[j].to;
if(dis[v][]>tmp+e[j].v){
dis[v][]=dis[v][];
cdis[v][]=cdis[v][];
dis[v][]=tmp+e[j].v;
cdis[v][]=cdis[k][flag];
}else if(dis[v][]==tmp+e[j].v)
cdis[v][]+=cdis[k][flag];
else if(dis[v][]>tmp+e[j].v){
dis[v][]=tmp+e[j].v;
cdis[v][]=cdis[k][flag];
}else if(dis[v][]==tmp+e[j].v)
cdis[v][]+=cdis[k][flag];
}
}
} int main(){
int t;
scanf("%d",&t);
while(t--){
cnt=;
memset(head,-,sizeof(head));
scanf("%d%d",&n,&m);
int u,v,w;
while(m--){
scanf("%d%d%d",&u,&v,&w);
adde(u,v,w);
}
scanf("%d%d",&mdd,&des);
Dijkstra();
int ans=cdis[des][];
if(dis[des][]==dis[des][]+)
ans+=cdis[des][];
printf("%d\n",ans);
}
return ;
}
POJ 3463 Sightseeing 【最短路与次短路】的更多相关文章
- poj 3463 Sightseeing( 最短路与次短路)
http://poj.org/problem?id=3463 Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissio ...
- POJ - 3463 Sightseeing 最短路计数+次短路计数
F - Sightseeing 传送门: POJ - 3463 分析 一句话题意:给你一个有向图,可能有重边,让你求从s到t最短路的条数,如果次短路的长度比最短路的长度多1,那么在加上次短路的条数. ...
- poj 3463 Sightseeing——次短路计数
题目:http://poj.org/problem?id=3463 当然要给一个点记最短路和次短路的长度和方案. 但往优先队列里放的结构体和vis竟然也要区分0/1,就像把一个点拆成两个点了一样. 不 ...
- poj 3463 Sightseeing(次短路+条数统计)
/* 对dij的再一次理解 每个点依旧永久标记 只不过这里多搞一维 0 1 表示最短路还是次短路 然后更新次数相当于原来的两倍 更新的时候搞一下就好了 */ #include<iostream& ...
- POJ 3463 Sightseeing (次短路)
题意:求两点之间最短路的数目加上比最短路长度大1的路径数目 分析:可以转化为求最短路和次短路的问题,如果次短路比最短路大1,那么结果就是最短路数目加上次短路数目,否则就不加. 求解次短路的过程也是基于 ...
- POJ 3463 Sightseeing 题解
题目 Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the ...
- POJ 3463 Sightseeing (次短路经数)
Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissions:10005 Accepted: 3523 Descr ...
- POJ 3463 Sightseeing
最短路+次短路(Dijkstra+priority_queue) 题意是要求你找出最短路的条数+与最短路仅仅差1的次短路的条数. 開始仅仅会算最短路的条数,和次短路的长度.真是给次短路条数跪了.ORZ ...
- POJ 3463 有向图求次短路的长度及其方法数
题目大意: 希望求出走出最短路的方法总数,如果次短路只比最短路小1,那也是可取的 输出总的方法数 这里n个点,每个点有最短和次短两种长度 这里采取的是dijkstra的思想,相当于我们可以不断找到更新 ...
随机推荐
- 如何提交本地代码到git仓库
首先要先注册一个自己的GitHub账号,注册网址:https://github.com/join 有了自己的账号以后,就可以进行登录,开始创建一个新的项目 创建一个新的项目,填写项目名称,描述 我是和 ...
- Nginx 笔记(四)nginx 原理与优化参数配置 与 nginx 搭建高可用集群
个人博客网:https://wushaopei.github.io/ (你想要这里多有) 一.nginx 原理与优化参数配置 master-workers 的机制的好处 首先,对于每个 ...
- Java实现 蓝桥杯 算法训练 求和求平均值
试题 算法训练 求和求平均值 问题描述 从键盘输入10个浮点数,求出它们的和以及平均值,要求用函数实现 输入格式 测试数据的输入一定会满足的格式. 1 10 (1行10列的向量) 输出格式 要求用户的 ...
- Java实现 蓝桥杯VIP 算法训练 连续正整数的和
问题描述 78这个数可以表示为连续正整数的和,1+2+3-+12,18+19+20+21,25+26+27. 输入一个正整数 n(<=10000) 输出 m 行(n有m种表示法),每行是两个正整 ...
- Java实现 LeetCode 27 移除元素
27. 移除元素 给定一个数组 nums 和一个值 val,你需要原地移除所有数值等于 val 的元素,返回移除后数组的新长度. 不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额 ...
- java算法集训代码填空题练习1
1 报数游戏 有n个孩子站成一圈,从第一个孩子开始顺时针方向报数,报到3的人出列,下一个人继续从1报数,直到最后剩下一个孩子为止.问剩下第几个孩子.下面的程序以10个孩子为例,模拟了这个过程,请完善之 ...
- java实现第七届蓝桥杯剪邮票
剪邮票 题目描述 如[图1.jpg], 有12张连在一起的12生肖的邮票. 现在你要从中剪下5张来,要求必须是连着的. (仅仅连接一个角不算相连) 比如,[图2.jpg],[图3.jpg]中,粉红色所 ...
- 简述hadoop安装步骤
简述hadoop安装步骤 安装步骤: 1.安装虚拟机系统,并进行准备工作(可安装- 一个然后克隆) 2.修改各个虚拟机的hostname和host 3.创建用户组和用户 4.配置虚拟机网络,使虚拟机系 ...
- HDU - 2546 饭卡 题解
题目大意 电子科大本部食堂的饭卡有一种很诡异的设计,即在购买之前判断余额.如果购买一个商品之前,卡上的剩余金额大于或等于5元,就一定可以购买成功(即使购买后卡上余额为负),否则无法购买(即使金额足够) ...
- AntD框架的upload组件上传图片时使用customRequest方法自定义上传行为
本次做后台管理系统,采用的是 AntD 框架.涉及到图片的上传,用的是AntD的 upload 组件. 我在上一篇文章<AntD框架的upload组件上传图片时使用customRequest方法 ...