[WC2010]重建计划(长链剖分+线段树+分数规划)
看到平均值一眼分数规划,二分答案mid,边权变为w[i]-mid,看是否有长度在[L,R]的正权路径。设f[i][j]表示以i为根向下j步最长路径,用长链剖分可以优化到O(1),查询答案线段树即可,复杂度O(nlog2n)
不知为什么bzoj上RE,luogu上AC,暂时不管了。
#include<bits/stdc++.h>
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
using namespace std;
const int N=2e5+;
int n,L,R,cnt,tot,hd[N],v[N],nxt[N],w[N],son[N],sv[N],dep[N],dfn[N];
double mid,ans,s[N<<],val[N],f[N];
void add(int x,int y,int z){v[++tot]=y,nxt[tot]=hd[x],w[tot]=z,hd[x]=tot;}
void dfs1(int u,int fa)
{
for(int i=hd[u];i;i=nxt[i])
if(v[i]!=fa)
{
dfs1(v[i],u);
if(dep[v[i]]>=dep[son[u]])son[u]=v[i],sv[u]=w[i];
if(dep[v[i]]+>dep[u])dep[u]=dep[v[i]]+;
}
}
void dfs2(int u,int fa)
{
dfn[u]=++cnt;
if(son[u])dfs2(son[u],u);
for(int i=hd[u];i;i=nxt[i])if(v[i]!=fa&&v[i]!=son[u])dfs2(v[i],u);
}
void update(int k,double v,int l,int r,int rt)
{
if(l==r){s[rt]=max(s[rt],v);return;}
int mid=l+r>>;
if(k<=mid)update(k,v,lson);else update(k,v,rson);
s[rt]=max(s[rt<<],s[rt<<|]);
}
double query(int L,int R,int l,int r,int rt)
{
if(L<=l&&r<=R)return s[rt];
int mid=l+r>>;double ret=-2e9;
if(L<=mid)ret=max(ret,query(L,R,lson));
if(R>mid)ret=max(ret,query(L,R,rson));
return ret;
}
void dfs(int u,int fa)
{
int id=dfn[u];
if(son[u])dfs(son[u],u),val[id]=val[id+]+sv[u]-mid;
update(id,f[id]=-val[id],,n,);
if(dep[u]>=L)
{
double tmp=query(id+L,id+min(dep[u],R),,n,);
ans=max(ans,tmp+val[id]);
}
for(int i=hd[u];i;i=nxt[i])
if(v[i]!=fa&&v[i]!=son[u])
{
int idv=dfn[v[i]];
dfs(v[i],u);
for(int j=;j<=dep[v[i]];j++)
{
int l=id+max(,L-j-),r=id+min(dep[u],R-j-);
double tmp=query(l,r,,n,);
ans=max(ans,tmp+val[idv]+val[id]+f[idv+j]+w[i]-mid);
}
for(int j=;j<=dep[v[i]];++j)
{
double tmp=val[idv]+f[idv+j]+w[i]-mid-val[id];
if(tmp>f[id+j+])update(id+j+,f[id+j+]=tmp,,n,);
}
}
}
bool check()
{
for(int i=;i<(N<<);i++)s[i]=-2e9;
ans=-2e9,dfs(,);
return ans>=1e-;
}
int main()
{
scanf("%d%d%d",&n,&L,&R);
for(int i=,x,y,z;i<n;i++)scanf("%d%d%d",&x,&y,&z),add(x,y,z),add(y,x,z);
dfs1(,),dfs2(,);
double l=,r=1e6;
while(r-l>1e-)
{
mid=(l+r)/;
if(check())l=mid;else r=mid;
}
printf("%.3lf",l);
}
[WC2010]重建计划(长链剖分+线段树+分数规划)的更多相关文章
- [WC2010]重建计划 长链剖分
[WC2010]重建计划 LG传送门 又一道长链剖分好题. 这题写点分治的人应该比较多吧,但是我太菜了,只会长链剖分. 如果你还不会长链剖分的基本操作,可以看看我的长链剖分总结. 首先一看求平均值最大 ...
- BZOJ.1758.[WC2010]重建计划(分数规划 点分治 单调队列/长链剖分 线段树)
题目链接 BZOJ 洛谷 点分治 单调队列: 二分答案,然后判断是否存在一条长度在\([L,R]\)的路径满足权值和非负.可以点分治. 对于(距当前根节点)深度为\(d\)的一条路径,可以用其它子树深 ...
- 「WC2010」重建计划(长链剖分/点分治)
「WC2010」重建计划(长链剖分/点分治) 题目描述 有一棵大小为 \(n\) 的树,给定 \(L, R\) ,要求找到一条长度在 \([L, R]\) 的路径,并且路径上边权的平均值最大 \(1 ...
- BZOJ1758[Wc2010]重建计划——分数规划+长链剖分+线段树+二分答案+树形DP
题目描述 输入 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai, ...
- 2019.01.21 bzoj1758: [Wc2010]重建计划(01分数规划+长链剖分+线段树)
传送门 长链剖分好题. 题意简述:给一棵树,问边数在[L,R][L,R][L,R]之间的路径权值和与边数之比的最大值. 思路: 用脚指头想都知道要01分数规划. 考虑怎么checkcheckcheck ...
- 洛谷 P4292 - [WC2010]重建计划(长链剖分+线段树)
题面传送门 我!竟!然!独!立!A!C!了!这!道!题!incredible! 首先看到这类最大化某个分式的题目,可以套路地想到分数规划,考虑二分答案 \(mid\) 并检验是否存在合法的 \(S\) ...
- 2018牛客网暑假ACM多校训练赛(第七场)I Tree Subset Diameter 动态规划 长链剖分 线段树
原文链接https://www.cnblogs.com/zhouzhendong/p/NowCoder-2018-Summer-Round7-I.html 题目传送门 - https://www.n ...
- BZOJ.3653.谈笑风生(长链剖分/线段树合并/树状数组)
BZOJ 洛谷 \(Description\) 给定一棵树,每次询问给定\(p,k\),求满足\(p,a\)都是\(b\)的祖先,且\(p,a\)距离不超过\(k\)的三元组\(p,a,b\)个数. ...
- BZOJ.3252.攻略(贪心 长链剖分/线段树)
题目链接 贪心,每次选价值最大的一条到根的链.比较显然(不选白不选). 考虑如何维护这个过程.一个点的价值选了就没有了,而它只会影响它子树里的点,可以用DFS序+线段树修改.而求最大值也可以用线段树. ...
随机推荐
- 原子类型字段更新器AtomicXxxxFieldUpdater
本博客系列是学习并发编程过程中的记录总结.由于文章比较多,写的时间也比较散,所以我整理了个目录贴(传送门),方便查阅. 并发编程系列博客传送门 原子类型字段更新器 在java.util.concurr ...
- 吴裕雄--天生自然TensorFlow2教程:测试(张量)- 实战
import tensorflow as tf from tensorflow import keras from tensorflow.keras import datasets import os ...
- 吴裕雄--天生自然Django框架开发笔记:Django Admin 管理工具
Django 提供了基于 web 的管理工具. Django 自动管理工具是 django.contrib 的一部分.可以在项目的 settings.py 中的 INSTALLED_APPS 看到它: ...
- UVA - 10118 Free Candies(免费糖果)(dp---记忆化搜索)
题意:桌上有4堆糖果,每堆有N(N<=40)颗.佳佳有一个最多可以装5颗糖的小篮子.他每次选择一堆糖果,把最顶上的一颗拿到篮子里.如果篮子里有两颗颜色相同的糖果,佳佳就把它们从篮子里拿出来放到自 ...
- HDU 5311:Hidden String
Hidden String Accepts: 437 Submissions: 2174 Time Limit: 2000/1000 MS (Java/Others) Memory Limit ...
- HALCON形状匹配讲解
HALCON形状匹配讲解 https://blog.csdn.net/linnyn/article/details/50663328 https://blog.csdn.net/u014608071/ ...
- shell 实现war包的配置更新和自动发布
此脚本主要用来实现非maven tomcat项目的war包手动发布, 1.将测试war包上传至指定目录 2.备份目前生产代码 3.自动配置文件替换 4.新版本代码的发布 #!/bin/bash ### ...
- 【论文笔记系列】AutoML:A Survey of State-of-the-art (下)
[论文笔记系列]AutoML:A Survey of State-of-the-art (上) 上一篇文章介绍了Data preparation,Feature Engineering,Model S ...
- Thinkcmf子栏目获取父级栏目所有子栏目列表
网站建设时经常需要输出某个栏目的子栏目,对应的在子栏目列表页也需要输出父级栏目的子栏目列表,thinkcmf可以输出所有子栏目,但却无法在子栏目列表页也适用, 因此就需要通过对数据库表查询来完成需求: ...
- PAT Basic 1132 数列的⽚段和(20) [数学问题-简单数学]
题目 给定⼀个正数数列,我们可以从中截取任意的连续的⼏个数,称为⽚段.例如,给定数列{0.1, 0.2, 0.3,0.4},我们有(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0 ...