本文是一个笨比学习组合数学的学习笔记,因为是笨比,所以写的应该算是很通俗易懂了。

首先,我们考虑这么一个问题:你有无穷多的\(p\)种颜色的珠子,现在你想要的把他们中的\(n\)个以圆形的形状等间距的黏在一个可以旋转的圆盘上,求方案数。

然后,该问题的答案是 \(\frac{1}{n}\Sigma_{d|n}\phi(\frac{n}{d})p^d\) ,之中\(\phi()\)表示欧拉函数,下面解释一下为什么会出现这样一个数论函数。

首先,我们来复习一下polya定理:设一个序列上定义了一置换群\(|G|\),则对该序列做\(p\)种颜色的染色,方案数为\(\frac{1}{|G|}\Sigma^{|G|}_{i=1}p^{c_i}\),之中,\(|G|\)表示置换群大小(元素个数),\(c_i\)表示\(G\)中第\(i\)个置换的循环节数目。

那么在上述圆排列问题中,置换群也就是旋转变换的群了,注意这里不考虑翻转变换(这也是为什么题目里说要黏在可旋转的圆盘上的原因,这样就和翻转变换无关了)。那么显然,一个有\(n\)个珠子的圆环,一共对应了\(n\)种旋转变换,分别是从转\(1\)个单位到转\(n\)个单位(也就是不转,或者说转0个单位)的\(n\)种。因此,置换群大小\(|G|=n\)。

把\(|G|=n\)代入polya的公式里,得到\(ans=\frac{1}{n}\Sigma^{n}_{i=1}p^{c_i}\),那么对比真正的答案,接下来要说明的就是,为什么\(\Sigma^{n}_{i=1}p^{c_i}=\Sigma_{d|n}\phi(\frac{n}{d})p^d\)。

答案其实简单的有些弱智:合并同类项

\(\Sigma^{n}_{i=1}p^{c_i}\)这一式子里,其实有\(n\)项,那么很自然的一个想法就是:\(p^{c_i}\)是不是有不少重复的呢?事实上,是的,甚至只有\(\sqrt{n}\)种不同的\(p^{c_i}\)。

下面随便假设有个指数\(d\),那我想知道\(\Sigma^{n}_{i=1}p^{c_i}\),有几个\(p^d\)出现,也就是有几个\(c_i=d\)。回忆一下,这里\(c_i\)指的是第\(i\)个置换循环节的数量,这个要怎么求呢?这里需要一个简单但nb的小知识:

定理:对于\(n\)个珠子组成的圆的旋转变换来说,旋转了\(x\)个单位的变换对应的循环节数量有\(gcd(n,x)\)个,特别的,\(x=0\)时的循环节数量有\(n\)个。

不是证明的证明:考虑一个青蛙跳石头的问题,也就是有\(n\)块石头圆形排列,编号从\(0~n-1\),青蛙初始在\(pos\)的位置,每次青蛙会跳x步,那么青蛙跳一步就相当于\(pos=(pos+x)%k\),现在,请问青蛙一直跳下去,能踩到多少块石头。例如,\(n=6,x=4,pos=2\)时,青蛙就只能跳到编号为\(0,2,4\)的三块儿石头上。该问题的答案是\(\frac{n}{gcd(n,x)}\),这个证明略了,这是个比较好理解但不太好表述的数论结论。

那么,如果我们把旋转\(x\)个单位的置换群理解成每步跳\(x\)格的青蛙的话,就有循环节长度 = 青蛙能跳到的石头个数 = \(\frac{n}{gcd(n,x)}\) 。又因为从青蛙的例子里可以看出,该长度和青蛙初始的\(pos\)无关,所以所有的循环节长度都是\(\frac{n}{gcd(n,x)}\)。

进而,由于 n=循环节长度*循环节数量,就可以解得循环节数量为\(gcd(n,x)\),这就是旋转\(x\)对应置换的循环节数量。

书归正传,我们现在想知道的是,给定一个整数\(d\),有几个\(p^d\)出现在\(\Sigma^{n}_{i=1}p^{c_i}\)中,或者说多少个\(c_i=d\)。\(c_i\)的含义是循环节数量,也就是对于\(x\in [1,n]\),有多少个\(x\)对应的循环节数量是\(d\)。废话不多说,按刚才的结论,这也就是问有多少个\(x\)满足\(gcd(n,x)=d\)。

有多少个\(x\)满足\(gcd(n,x)=d\):这又是个数论问题,首先,变换成\(gcd(\frac{n}{d},\frac{x}{d})=1\),这个变换是科学的,因为\(gcd(n,x)=d\)中\(n\)和\(x\)一定是\(d\)的倍数。那么,有多少个\(x\)满足\(gcd(\frac{n}{d},\frac{x}{d})=1\)呢?由于满足\(gcd(\frac{n}{d},狗)=1\)的狗有\(\phi(n/d)\)个(根据欧拉函数的定义),而狗和\(x\)显然是一一对应的,所以这样的\(x\)就也有\(\phi(n/d)\)个。

所以,\(ans=\frac{1}{n}\Sigma^{n}_{i=1}p^{c_i}=\frac{1}{n}\Sigma_{d|n}\phi(\frac{n}{d})p^d\),这里\(d|n\)是因为根据上面推导,循环节数量\(d\)显然一定是\(n\)的因子。

[组合数学] 圆排列和欧拉函数为啥有关系:都是polya定理的锅的更多相关文章

  1. HDU5780 gcd (BestCoder Round #85 E) 欧拉函数预处理——分块优化

    分析(官方题解): 一点感想: 首先上面那个等式成立,然后就是求枚举gcd算贡献就好了,枚举gcd当时赛场上写了一发O(nlogn)的反演,写完过了样例,想交发现结束了 吐槽自己手速慢,但是发了题解后 ...

  2. BZOJ 2190仪仗队【欧拉函数】

    问题的唯一难点就是如何表示队长能看到的人数?如果建系,队长所在的点为(0,0)分析几组数据就一目了然了,如果队长能看到的点为(m,n),那么gcd(m,n)=1即m n 互质或者是(0,1),(1,0 ...

  3. XMU 1615 刘备闯三国之三顾茅庐(三) 【欧拉函数+快速幂+欧拉定理】

    1615: 刘备闯三国之三顾茅庐(三) Time Limit: 1000 MS  Memory Limit: 128 MBSubmit: 45  Solved: 8[Submit][Status][W ...

  4. 由 [SDOI2012]Longge的问题 探讨欧拉函数和莫比乌斯函数的一些性质和关联

    本题题解 题目传送门:https://www.luogu.org/problem/P2303 给定一个整数\(n\),求 \[ \sum_{i=1}^n \gcd(n,i) \] 蒟蒻随便yy了一下搞 ...

  5. 【省选十连测之九】【DP】【组合计数去重】【欧拉函数】基本题

    目录 题意: 输入格式: 输出格式: 数据范围: 思路: 嵌套题的转移 基本题的转移 Part1 Part2 Part3 代码 题意: 这是一个关于括号组合的题. 首先定义一道题是由'(',')',' ...

  6. HDU 5430 Reflect(欧拉函数)

    题目: http://acm.hdu.edu.cn/showproblem.php?pid=5430 从镜面材质的圆上一点发出一道光线反射NNN次后首次回到起点. 问本质不同的发射的方案数. 输入描述 ...

  7. HDU 4483 Lattice triangle(欧拉函数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4483 题意:给出一个(n+1)*(n+1)的格子.在这个格子中存在多少个三角形? 思路:反着想,所有情 ...

  8. hdu 5279 Reflect phi 欧拉函数

    Reflect Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://bestcoder.hdu.edu.cn/contests/contest_chi ...

  9. UVA12493 - Stars(求1-N与N互质的个数)欧拉函数

    Sample Input 3 4 5 18 36 360 2147483647 Sample Output 1 1 2 3 6 48 1073741823 题目链接:https://uva.onlin ...

随机推荐

  1. JDK基本库概述

    看脚下,不断行,莫存顺逆. 剖析java的哪些源码 目前主要是java基本库的一些源码的分析,jvm工具的使用等等,后续可能还会结合hotspot源码来分析jvm原理,当然,这是一个比较高级的主题,根 ...

  2. mac下使用xampp中php显示1044/1045/1046(卸载xampp)

    问题描述 在mac下使用xampp,访问http://192.168.64.3/phpmyadmin/可以正常显示php页面,当创建数据库时提示1044也就是普通用户没有权限 问题猜测 猜测在使用xa ...

  3. JDBC14 ORM03 JavaBean封装

    Javabean对象封装一条信息(推荐) 让JavaBean的属性名和类型尽量和数据库保持一致 一条记录对应一个对象,将这些查询到的对象放到容器中(List) 表信息如下 List封装多条信息 Con ...

  4. beego中Controller的GetControllerAndAction方法

    beego中Controller的GetControllerAndAction方法 GetControllerAndAction方法在beego中的源码 // GetControllerAndActi ...

  5. ubuntu docker相关错误记录

    执行下面命令 curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add - 报错: gpg: can't c ...

  6. Gradle 多环境URL请求设置

    在开发过程中,多环境配置是经常遇到的,比如在Android开发过程中,在不同环境上请求服务器的URL是不同的,使用Gradle进行管理,是非常方便的. 首先查看工程目录结构: 使用AndroidStu ...

  7. git:error: Your local changes to the following files would be overwritten by merge:

    最近用git在服务器.github.本地更新代码的时候,因为频繁修改偶尔出现这个错误 覆盖本地的代码: git stash git pull git stash pop 保留对服务器上的修改: git ...

  8. POJ3275 Ranking the Cows floyd的bitset优化

    POJ3275 Ranking the Cows #include <iostream> #include <cstdio> #include <bitset> u ...

  9. flask之jinjia2模板语言

    flask_jinjia2.py ''' flask中的jinjia2模板语言(和django中模板类似): (1)模板变量{{ }} (2)模板标签{% %} ①for循环遍历 {% for foo ...

  10. mysql小白系列_11 MHA补充

    1.ssh_user 使用VIP方式需要在新的master主机上对网卡启alias并设置IP,普通用户没权限 2.VIP问题 配置以后主从后,在MHA管理节点启动masterha_manager,VI ...