【一致性检验指标】Kappa(cappa)系数
1 定义
百度百科的定义:
它是通过把所有地表真实分类中的像元总数(N)乘以混淆矩阵对角线(Xkk)的和,再减去某一类地表真实像元总数与被误分成该类像元总数之积对所有类别求和的结果,再除以总像元数的平方减去某一类中地表真实像元总数与该类中被误分成该类像元总数之积对所有类别求和的结果所得到的。
这对于新手而言可能比较难理解。什么混淆矩阵?什么像元总数?
我们直接从算式入手:
\]
\(p_0\)是每一类正确分类的样本数量之和除以总样本数,也就是总体分类精度
假设每一类的真实样本个数分别为\(a_1,a_2,...,a_c\)
而预测出来的每一类的样本个数分别为\(b_1,b_2,...,b_c\)
总样本个数为n
则有:\(p_e=a_1×b_1+a_2×b_2+...+a_c×b_c / n×n\)
1.1 简单例子
学生考试的作文成绩,由两个老师给出 好、中、差三档的打分,现在已知两位老师的打分结果,需要计算两位老师打分之间的相关性kappa系数:
从上面的公式中,可以知道我们其实只需要计算\(p_0 ,p_e\)即可:
Po = (10+35+15) / 87 = 0.689
a1 = 10+2+8 = 20; a2 = 5+35+5 = 45; a3 = 5+2+15 = 22;
b1 = 10+5+5 = 20; b2 = 2+35+2 = 39; b3 = 8+5+15 = 28;
Pe = (a1b1 + a2b2 + a3b3) / (8787) = 0.455
K = (Po-Pe) / (1-Pe) = 0.4293578
可以说提到kappa到处都是两个老师的例子,哈哈
2 指标解释
kappa计算结果为[-1,1],但通常kappa是落在 [0,1] 间
第一种分析准则--可分为五组来表示不同级别的一致性:
0.0~0.20极低的一致性(slight)
0.21~0.40一般的一致性(fair)
0.41~0.60 中等的一致性(moderate)
0.61~0.80 高度的一致性(substantial)
0.81~1几乎完全一致(almost perfect)
【一致性检验指标】Kappa(cappa)系数的更多相关文章
- Kappa(cappa)系数只需要看这一篇就够了,算法到python实现
1 定义 百度百科的定义: 它是通过把所有地表真实分类中的像元总数(N)乘以混淆矩阵对角线(Xkk)的和,再减去某一类地表真实像元总数与被误分成该类像元总数之积对所有类别求和的结果,再除以总像元数的平 ...
- python实现六大分群质量评估指标(兰德系数、互信息、轮廓系数)
python实现六大分群质量评估指标(兰德系数.互信息.轮廓系数) 1 R语言中的分群质量--轮廓系数 因为先前惯用R语言,那么来看看R语言中的分群质量评估,节选自笔记︱多种常见聚类模型以及分群质量评 ...
- kappa 一致性系数计算实例
kappa系数在遥感分类图像的精度评估方面有重要的应用,因此学会计算kappa系数是必要的 实例1 实例2
- Quartus设计FIR滤波器的系数文件格式(适用于FIR II的IP核)
对常用的FIR,我们使用MATLAB的fdatool(或者filterDesigner) 设计滤波器,给定指标,生成系数.为了方便,我们将系数保存到文件,其保存格式比较简介,在此进行说明. 1.FIR ...
- 数据分析与R语言
数据结构 创建向量和矩阵 函数c(), length(), mode(), rbind(), cbind() 求平均值,和,连乘,最值,方差,标准差 函数mean(), sum(), min(), m ...
- 《零起点,python大数据与量化交易》
<零起点,python大数据与量化交易>,这应该是国内第一部,关于python量化交易的书籍. 有出版社约稿,写本量化交易与大数据的书籍,因为好几年没写书了,再加上近期"前海智库 ...
- python + sklearn ︱分类效果评估——acc、recall、F1、ROC、回归、距离
之前提到过聚类之后,聚类质量的评价: 聚类︱python实现 六大 分群质量评估指标(兰德系数.互信息.轮廓系数) R语言相关分类效果评估: R语言︱分类器的性能表现评价(混淆矩阵,准确率,召回率,F ...
- 数据分析,R语言
数据结构 创建向量和矩阵 1 函数c(), length(), mode(), rbind(), cbind() 求平均值,和,连乘,最值,方差,标准差 1 函数mean(), sum(), min( ...
- R数据分析:用R建立预测模型
预测模型在各个领域都越来越火,今天的分享和之前的临床预测模型背景上有些不同,但方法思路上都是一样的,多了解各个领域的方法应用,视野才不会被局限. 今天试图再用一个实例给到大家一个统一的预测模型的做法框 ...
随机推荐
- Scala的Higher-Kinded类型
Scala的Higher-Kinded类型 Higher-Kinded从字面意思上看是更高级的分类,也就是更高一级的抽象.我们先看个例子. 如果我们要在scala中实现一个对Seq[Int]的sum方 ...
- Spring5参考指南:JSR 330标准注解
文章目录 @Inject 和 @Named @Named 和 @ManagedBean 之前的文章我们有讲过,从Spring3.0之后,除了Spring自带的注解,我们也可以使用JSR330的标准注解 ...
- 【JAVA基础】05 Java语言基础:数组
1. 数组概述和定义格式说明 为什么要有数组(容器) 为了存储同种数据类型的多个值 数组概念 数组是存储同一种数据类型多个元素的集合.也可以看成是一个容器. 数组既可以存储基本数据类型,也可以存储引用 ...
- Vue Cli 报错:You are using the runtime-only build of Vue where the template compiler is not availabl
报错原因: 这里引用的是vue.runtime.esm.js,造成的不能正常运行. vue-cli 2.x 解决方法: 在webpack.base.conf.js配置文件中多加了一段代码,将 vue/ ...
- 从实践出发:微服务布道师告诉你Spring Cloud与Boot他如何选择
背景 随着公司业务量的飞速发展,平台面临的挑战已经远远大于业务,需求量不断增加,技术人员数量增加,面临的复杂度也大大增加.在这个背景下,平台的技术架构也完成了从传统的单体应用到微服务化的演进. 系统架 ...
- fullpage.js禁止滚动
http://www.wenjiangs.com/doc/fullpage-method 转载于:https://www.cnblogs.com/hzz-/p/8268771.html
- DeepWalk论文精读:(1)解决问题&相关工作
模块1 1. 研究背景 随着互联网的发展,社交网络逐渐复杂化.多元化.在一个社交网络中,充斥着不同类型的用户,用户间产生各式各样的互动联系,形成大小不一的社群.为了对社交网络进行研究分析,需要将网络中 ...
- 重新认识 Spring IOC
spring IOC 剖析 再品IOC与DI IOC(Inversion of Control) 控制反转:所谓控制反转,就是把原先我们代码里面需要实现的对象创 建.依赖的代码,反转给容器来帮忙实现. ...
- Java——多线程超详细总结
该系列博文会告诉你如何从入门到进阶,一步步地学习Java基础知识,并上手进行实战,接着了解每个Java知识点背后的实现原理,更完整地了解整个Java技术体系,形成自己的知识框架. 一.线程概述 几乎所 ...
- MongoDB JAVA开发
简介 MongoDB是一个基于内存的NoSql(非关系型数据库).具有NoSql的特点,读写快(key-value),不适合持久化但都提供此功能. 用途 我用来存放页面模板 用法 依赖 <dep ...