[zoj3813]Alternating Sum 公式化简,线段树
题意:给一个长度不超过100000的原串S(只包含数字0-9),令T为将S重复若干次首尾连接后得到的新串,有两种操作:(1)修改原串S某个位置的值(2)给定L,R,询问T中L<=i<=j<=R的G(i,j)的和,G(i,j)=Ti-Ti+1+Ti+2-Ti+3+...+(-1)j-iTj,L,R小于1e18
思路:从公式看不出用什么方法快速计算,不妨先对公式化简。令f(i)=(j:i->R)ΣG(i,j),则有:f(i)=G(i,i)+G(i,i+1)+...+G(i,R) (a)
将 (a)的每一项展开,不难得到:f(i)=(R-i+1)*Ti - (R-i)*Ti+1 + (R-i-1)*Ti+3 +... + (-1)R-i*TR
然后将f(i)求和,sum(L,R)=(i:L->R)Σf(i) = f(L) + f(L+1) + f(L+2) + ... + f(R),将每一项展开得到:
f(L)= (R-L+1)*TL - (R-L)*TL+1 + (R-L-1)*TL+2 + ... + (-1)R-L*TR
f(L+1)= (R-L)*TL+1 - (R-L-1)*TL+2 - ... + (-1)R-L-1*TR
.
.
.
f(R-1)= 2TR-1 - TR
f(R)= TR
于是 sum(L,R)=(R-L+1)*TL + (R-L-1)*TL+2 + ... + 2TR-1 ,当R-L+1为偶数时
(R-L+1)*TL + (R-L-1)*TL+2 + ... + TR ,当R-L+1为奇数时
由于有修改操作,而sum(L,R) 可以比较容易的通过区间来合并,只需在线段树的每个区间[L,R]上记录四个值,var1表示从sum(L,R),var2表示sum(L+1,R),con1=TL + TL+2 + ... ,con2=TL+1 + TL+3 + ...,con1和con2在合并区间时需要用到,而左子区间长度为奇数会导致合并区间时右子区间需要从第二个数开始的sum值,所以需要记录sum(L+1,R)和con2。具体操作见代码。
到这里,问题并没解决,题目给的L,R太大,不过由于是重复原串S得到的串,肯定有快速计算重复部分的答案。对询问的区间左右边界定位,看是处在第几个S串里面,如果在同一个里面,直接算区间就行,如果跨多个S串,则答案由前缀、重复串、后缀这三部分组成,而重复串的值可以用快速幂的方法用logn次合并得到,每次合并都是O(1)的,三部分的值都出来后对这三部分进行合并即可。
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
#include <map>#include <set>#include <cmath>#include <ctime>#include <deque>#include <queue>#include <stack>#include <vector>#include <cstdio>#include <string>#include <cstdlib>#include <cstring>#include <iostream>#include <algorithm>using namespace std;#define X first#define Y second#define pb push_back#define mp make_pair#define all(a) (a).begin(), (a).end()#define fillchar(a, x) memset(a, x, sizeof(a))typedef long long ll;typedef pair<int, int> pii;typedef unsigned long long ull;#ifndef ONLINE_JUDGEvoid RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);}void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1;while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>void print(const T t){cout<<t<<endl;}template<typename F,typename...R>void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}#endiftemplate<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}template<typename T>void V2A(T a[],const vector<T>&b){for(int i=0;i<b.size();i++)a[i]=b[i];}template<typename T>void A2V(vector<T>&a,const T b[]){for(int i=0;i<a.size();i++)a[i]=b[i];}const double PI = acos(-1.0);const int INF = 1e9 + 7;/* -------------------------------------------------------------------------------- */template<int mod>struct ModInt { const static int MD = mod; int x; ModInt(ll x = 0): x(x % MD) {} int get() { return x; } ModInt operator + (const ModInt &that) const { int x0 = x + that.x; return ModInt(x0 < MD? x0 : x0 - MD); } ModInt operator - (const ModInt &that) const { int x0 = x - that.x; return ModInt(x0 < MD? x0 + MD : x0); } ModInt operator * (const ModInt &that) const { return ModInt((long long)x * that.x % MD); } ModInt operator / (const ModInt &that) const { return *this * that.inverse(); } ModInt operator += (const ModInt &that) { x += that.x; if (x >= MD) x -= MD; } ModInt operator -= (const ModInt &that) { x -= that.x; if (x < 0) x += MD; } ModInt operator *= (const ModInt &that) { x = (long long)x * that.x % MD; } ModInt operator /= (const ModInt &that) { *this = *this / that; } ModInt inverse() const { int a = x, b = MD, u = 1, v = 0; while(b) { int t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } if(u < 0) u += MD; return u; }};typedef ModInt<1000000007> mint;const int maxn = 1e5 + 7;const int md = 1e9 + 7;int a[maxn];class SegTree { #define lson l, m, rt << 1 #define rson m + 1, r, rt << 1 | 1 struct Node { mint var1, var2, con1, con2; }; Node tree[maxn << 2]; int n; Node &merge(const Node &ul, const ll &Llen, const Node &ur, const ll &Rlen) { static Node ans; if (Llen & 1) { ans.var1 = ul.var1 + ur.var2 + ul.con1 * Rlen; ans.var2 = ul.var2 + ur.var1 + ul.con2 * Rlen; ans.con1 = ul.con1 + ur.con2; ans.con2 = ul.con2 + ur.con1; } else { ans.var1 = ul.var1 + ur.var1 + ul.con1 * Rlen; ans.var2 = ul.var2 + ur.var2 + ul.con2 * Rlen; ans.con1 = ul.con1 + ur.con1; ans.con2 = ul.con2 + ur.con2; } return ans; } void build(int l, int r, int rt) { if (l == r) { Node &u = tree[rt]; u.var1 = u.con1 = a[l]; u.var2 = u.con2 = 0; return ; } int m = (l + r) >> 1; build(lson); build(rson); int len = r - l + 1; tree[rt] = merge(tree[rt << 1], m - l + 1, tree[rt << 1 | 1], r - m); } void update(int p, int x, int l, int r, int rt) { if (l == r) { Node &u = tree[rt]; u.var1 = u.con1 = x; u.var2 = u.con2 = 0; return ; } int m = (l + r) >> 1; if (p <= m) update(p, x, lson); else update(p, x, rson); tree[rt] = merge(tree[rt << 1], m - l + 1, tree[rt << 1 | 1], r - m); } Node query(int L, int R, int l, int r, int rt) { if (L <= l && r <= R) return tree[rt]; int m = (l + r) >> 1; if (R <= m) return query(L, R, lson); if (L > m) return query(L, R, rson); Node ul = query(L, m, lson), ur = query(m + 1, R, rson); return merge(ul, m - L + 1, ur, R - m); } Node get(ll cnt) { if (cnt == 1) return tree[1]; Node u = get(cnt >> 1); ll c = cnt >> 1; u = merge(u, c * n, u, c * n); if (cnt & 1) u = merge(u, c * n * 2, tree[1], n); return u; }public: void build(int n) { this->n = n; build(1, n, 1); } void update(int p, int x) { update(p, x, 1, n, 1); } mint query(ll L, ll R) { ll lid = (L - 1) / n + 1, rid = (R - 1) / n + 1, dif = rid - lid; L = (L - 1) % n + 1; R = (R - 1) % n + 1; if (dif == 0) return query(L, R, 1, n, 1).var1; Node ul = query(L, n, 1, n, 1), ur = query(1, R, 1, n, 1); int Llen = n - L + 1, Rlen = R; mint var = ul.var1 + ul.con1 * ((dif - 1) * n + Rlen); if (dif - 1) { Node buf = get(dif - 1); if (Llen & 1) var += buf.var2 + buf.con2 * Rlen; else var += buf.var1 + buf.con1 * Rlen; } if ((Llen + (dif - 1) * n) & 1) var += ur.var2; else var += ur.var1; return var; }};SegTree st;char s[maxn];int main() {#ifndef ONLINE_JUDGE freopen("in.txt", "r", stdin); //freopen("out.txt", "w", stdout);#endif // ONLINE_JUDGE int T, n, m, t; ll x, y; cin >> T; while (T --) { scanf("%*c%s", s); int n = strlen(s); for (int i = 0; i < n; i ++) { a[i + 1] = s[i] - '0'; } st.build(n); cin >> m; while (m --) { scanf("%d%lld%lld", &t, &x, &y); if (t == 1) st.update(x, y); else printf("%d\n", st.query(x, y).get()); } } return 0;} |
[zoj3813]Alternating Sum 公式化简,线段树的更多相关文章
- codeforces 1217E E. Sum Queries? (线段树
codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...
- Yandex.Algorithm 2011 Round 1 D. Sum of Medians 线段树
题目链接: Sum of Medians Time Limit:3000MSMemory Limit:262144KB 问题描述 In one well-known algorithm of find ...
- Codeforces 85D Sum of Medians(线段树)
题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...
- 【BZOJ4262】Sum 单调栈+线段树
[BZOJ4262]Sum Description Input 第一行一个数 t,表示询问组数. 第一行一个数 t,表示询问组数. 接下来 t 行,每行四个数 l_1, r_1, l_2, r_2. ...
- 【Educational Codeforces Round 37】F. SUM and REPLACE 线段树+线性筛
题意 给定序列$a_n$,每次将$[L,R]$区间内的数$a_i$替换为$d(a_i)$,或者询问区间和 这题和区间开方有相同的操作 对于$a_i \in (1,10^6)$,$10$次$d(a_i) ...
- CF1217E Sum Queries? (线段树)
完了,前几天才说 edu 的 DEF 都不会,现在打脸了吧 qwq 其实在刚说完这句话 1min 就会了 D,3min 就会了 E 发现,对于大小 \(\ge 3\) 的不平衡集合,它至少有一个大小为 ...
- 【11.5校内测试】【倒计时5天】【DP】【二分+贪心check】【推式子化简+线段树】
Solution 非常巧妙的建立DP方程. 据dalao们说题目明显暗示根号复杂度??(反正我是没看出来 因为每次分的块大小一定不超过$\sqrt n$,要不然直接每个位置开一个块答案都才为$n$. ...
- codeforces 85D D. Sum of Medians 线段树
D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...
- leetcode@ [307] Range Sum Query - Mutable / 线段树模板
Given an integer array nums, find the sum of the elements between indices i and j (i ≤ j), inclusive ...
随机推荐
- A. Number Theory Problem
题目大意:计算小于2^n,且满足2^k-1并且是7的倍数的个数 思路:优先打表,数据不大,1e5,然后求个前n项和 #include<bits/stdc++.h> using namesp ...
- E. 数字串
给你一个长度为 n 的数字串,找出其中位数不超过15位的不包含前导0和后导0的数 x ,使得 x+f(x) 是一个回文数,其中 f(x) 表示将 x 反转过来的数. 输入格式 多组输入,处理到文件结束 ...
- lua 逻辑运算 and, or, not
这边并非说lua低级,为了方便区分才这么写的. 高级语言中的逻辑运算符是&&,||,! a&&b : 当a和b都为真, 结果返回为真,当a或者b有一个为假,结果返回为假 ...
- 下载mp4文件
实现mp4文件的下载,而不是在线播放 <!DOCTYPE html> <html lang="en"> <head> <meta char ...
- 杂记三 · CSP-2019-The first step
update:我终于懂得衰亡的民族之所以沉默的缘由了. 初赛Day -7 虽然我是第一次参加初赛而且到现在为止我还没见过初赛题但我一点也不慌! 真的!一点!也不慌! 初赛Day 1 早上和可s爱b j ...
- Java 添加、隐藏/显示、删除PDF图层
本文介绍操作PDF图层的方法.可分为添加图层(包括添加线条.形状.字符串.图片等图层).隐藏或显示图层.删除图层等.具体可参考如下Java代码示例. 工具:Free Spire.PDF for Jav ...
- 十六, Oracle约束
前言 数据的完整性用于确保数据库数据遵从一定的商业和逻辑规则,在oracle中,数据完整性可以使用约束.触发器.应用程序(过程.函数)三种方法来实现,在这三种方法中,因为约束易于维护,并且具有最好的性 ...
- 【转载】pyinstaller的使用和几个坑
1.-w是不显示命令窗口, -i 图标文件的路径 这是改变图标的,但是我发现只能改变任务栏里的和命令窗口的图标,并不能改变exe文件的图标.另外这些参数要加载pyinstaller和路径中间. 2 ...
- MinIO 的分布式部署
目录 1 前言 2 分布式存储可靠性常用方法 2.1 冗余 2.2 校验 3 MinIO存储机制 3.1 概念理解 3.2 纠删码EC(Erasure Code) 3.3 存储形式 4 部署实践 4. ...
- vue-cli3.0 gui初体验
为什么80%的码农都做不了架构师?>>> 介绍 新版的vuecli3.0提供了一个vue ui这个命令,这个命令是做什么的呢,这里引用官网的一段介绍 vue ui 你可以通过 v ...