Describe

为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:

有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定义一个数列的积为该数列所有元素的乘积,要求你求出所有可能的数列的积的和 mod 1000000007的值,是不是很简单呢?呵呵!

Input

第一行三个整数n,m,k分别表示数列元素的取值范围,数列元素个数,以及已知的限制条数。

接下来k行,每行两个正整数x,y表示A[x]的值不能是y。

Output

一行一个整数表示所有可能的数列的积的和对1000000007取模后的结果。如果一个合法的数列都没有,答案输出0。

Sample Input

3 4 5
1 1
1 1
2 2
2 3
4 3

Sample Output

90

Explain

A[1]不能取1

A[2]不能取2、3

A[4]不能取3

所以可能的数列有以下12种

数列 积

2 1 1 1 2

2 1 1 2 4

2 1 2 1 4

2 1 2 2 8

2 1 3 1 6

2 1 3 2 12

3 1 1 1 3

3 1 1 2 6

3 1 2 1 6

3 1 2 2 12

3 1 3 1 9

3 1 3 2 18

30%的数据n<=4,m<=10,k<=10

另有20%的数据k=0

70%的数据n<=1000,m<=1000,k<=1000

100%的数据 n<=10^9, m<=10^9, k<=10^5,1<=y<=n,1<=x<=m

Solution

首先我们想一下如果没有限制那么最后的结果是多少.对于数列中的每一项,我们都可以取1~n,共有m项,最后总结果其实挺整齐的,$(1+2+3+......+n) * (1+2+3+......n) *...... *(1+2+3+......n) $共乘m次,因为每个数都可以从每乘一次的数(1 ~ n)中选一个算出数列的积,最后相加,化简 \((1+2+3+4+......+n)^m\) ,也就是\(((1+n)*n/2)^m\) .可以看做用了分步乘法原理,共有m次方,也就是每个数对结果的贡献.

如果一个数被限制了,那么这个数所在的某一次方中就不是1 ~ n的加和了,要减去被限制的数,没有被限制的数还是1 ~ n加和,最后m个数遍历完,将m个得到的结果乘起来,就是最后结果了.

Attention

数据范围如此之大,快速幂!!!

注意取模,只要对结果没影响就取模.

去重边,样例中就有

Code

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <map>
#include <iostream>
using namespace std;
typedef long long ll;
const int maxn=1e5+5;
const ll Mod=1000000007;
map<pair<ll,ll>,ll> ma1;
map<ll,ll> ma2;
ll hj[maxn],n,m,k,js;
ll cf(ll now,ll zs){
ll jl=now%Mod,ans=1;
while(zs){
if(zs&1)ans=(ans*(jl%Mod))%Mod;
jl=(jl*(jl%Mod))%Mod;
zs>>=1;
}
return ans;
}
int main(){
scanf("%lld%lld%lld",&n,&m,&k);
for(ll i=1;i<=k;++i){
ll x,y;
scanf("%lld%lld",&x,&y);
if(!ma2[x]) hj[++js]=x;
if(ma1[make_pair(x,y)])continue;
ma1[make_pair(x,y)]=1;
ma2[x]+=y;
}
ll ans=1,cj=(n+1)*n/2;
for(ll i=1;i<=js;++i)
ans=(ans*((cj-ma2[hj[i]])%Mod))%Mod;
printf("%lld\n",(ans%Mod)*(cf(cj,m-js)%Mod)%Mod);
return 0;
}

hzoi

P2220 [HAOI2012]容易题(快速幂)的更多相关文章

  1. 洛谷 P2220 [HAOI2012]容易题 数论

    洛谷 P2220 [HAOI2012]容易题 题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数 ...

  2. P2220 [HAOI2012]容易题【快速幂】

    题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定 ...

  3. [LOJ#162]模板题-快速幂2

    <题目链接> 注意:这可能也是一道模板题. 注意2:$p=998224352$ 注意3:对于$100\%$的数据,$n\leq 5 \times 10^6$ 这个题很启发思路,如果直接快速 ...

  4. P2220 [HAOI2012]容易题

    传送门 首先 $(\sum_{i=1}^{n}a_i)(\sum_{i=1}^{m}b_i)$ 展开以后包含了所有 $ab$ 两两相乘的情况并且每种组合只出现一次 发现展开后刚好和题目对序列价值的定义 ...

  5. P2220 [HAOI2012]容易题[小学数学]

    题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定 ...

  6. POJ 3641 Pseudoprime numbers (数论+快速幂)

    题目链接:POJ 3641 Description Fermat's theorem states that for any prime number p and for any integer a ...

  7. 【bzoj2751】[HAOI2012]容易题(easy) 数论-快速幂

    [bzoj2751][HAOI2012]容易题(easy) 先考虑k=0的情况 那么第一个元素可能为[1,n] 如果序列长度为m-1时的答案是ans[m-1] 那么合并得 然后同理答案就是 k很小 而 ...

  8. BZOJ 2751 容易题(easy) 快速幂+快速乘

    2751: [HAOI2012]容易题(easy) Description 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:有一个数列A已知对于所有的A[i] ...

  9. 【模拟题(电子科大MaxKU)】解题报告【树形问题】【矩阵乘法】【快速幂】【数论】

    目录: 1:一道简单题[树形问题](Bzoj 1827 奶牛大集会) 2:一道更简单题[矩阵乘法][快速幂] 3:最简单题[技巧] 话说这些题目的名字也是够了.... 题目: 1.一道简单题 时间1s ...

随机推荐

  1. JMeter分布式压测实战(2020年清明假期学习笔记)

    一.常用压力测试工具对比 简介:目前用的常用测试工具对比 1.loadrunner 性能稳定,压测结果及颗粒度大,可以自定义脚本进行压测,但是太过于重大,功能比较繁多. 2.Apache ab(单接口 ...

  2. Nacos - 阿里开源配置中心

    配置中心相信大家都有听过,zookeeper.apollo等等都是配置中心的代表,但大部分都是JAVA系为主的,笔者主要开发语言使用的是Golang当然也有类似于ETCD这样的组件,但是并不方便管理也 ...

  3. 关于赋值的Java面试题

    面试题:(1) short s = 1:s = s + 1;(2) short s = 1;s += 1;问:上面两个代码有没有问题,如果有,哪里有问题? 答:(1) 第一个是错的,会报错损失精度,因 ...

  4. pytorch Dataset数据集和Dataloader迭代数据集

    import torch from torch.utils.data import Dataset,DataLoader class SmsDataset(Dataset): def __init__ ...

  5. search(8)- elastic4s-search-query模式

    上篇提过query模式除对记录的筛选之外还对符合条件的记录进行了评分,即与条件的相似匹配程度.我们把评分放在后面的博文中讨论,这篇我们只介绍query查询. 查询可以分为绝对值查询和全文查询:绝对值查 ...

  6. 2019.11.13课堂实验之用Linux下的shell脚本完成两文本交替输出

    有两个文本如下,实际中并不知道两文本各有多少行: 文本1.txt aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa ccccccccccccccccccccccccccc ...

  7. 吕建文 20199303《Linux内核原理与分析》第十二周作业

    ShellShock攻击实验 2014年9月24日,Bash中发现了一个严重漏洞shellshock,该漏洞可用于许多系统,并且既可以远程也可以在本地触发.在本实验中,学生需要亲手重现攻击来理解该漏洞 ...

  8. 2019-2020-1 20199303《Linux内核原理与分析》第七周作业

    进程的描述 1.进程概念 进程是进程实体的运行过程,是系统进行资源分配和调度的一个独立单位.进程由程序段.数据段.PCB组成 2.PCB中的信息 ①进程标识符 ②处理机状态 ③进程调度信息 ④进程控制 ...

  9. qt 鼠标拖动窗口 跳动 解决

    因为获取当前的位置,似乎没有把标题栏的高度记进去. 所以移动前,得考虑到标题栏的高度. 用以下方式获取标题栏高度: QApplication::style()->pixelMetric(QSty ...

  10. 编写管理IP地址参数脚本(永久性)

    1.用各种命令取出/etc/passwd文件前5行的最后一个字母.(2种) 2.编写管理IP地址参数脚本(永久性) a.只能用sed命令完成 b.提示用户变量赋值(IP.子网掩码.网关.DNS等) c ...