了解1D和3D卷积神经网络 | Keras

当我们说卷积神经网络(CNN)时,通常是指用于图像分类的2维CNN。但是,现实世界中还使用了其他两种类型的卷积神经网络,即1维CNN和3维CNN。在本指南中,我们将介绍1D和3D CNN及其在现实世界中的应用。我假设你已经大体上熟悉卷积网络的概念。
2维CNN | Conv2D
这是在Lenet-5架构中首次引入的标准卷积神经网络。Conv2D通常用于图像数据。之所以称其为2维CNN,是因为核在数据上沿2维滑动,如下图所示。

使用CNN的整体优势在于,它可以使用其核从数据中提取空间特征,而其他网络则无法做到。例如,CNN可以检测图像中的边缘,颜色分布等,这使得这些网络在图像分类和包含空间属性的其他类似数据中非常强大。
以下是在keras中添加Conv2D图层的代码。
import keras
from keras.layers import Conv2D
model = keras.models.Sequential()
model.add(Conv2D(1, kernel_size=(3,3), input_shape = (128, 128, 3)))
model.summary()
参数input_shape(128、128、3)表示图像的(高度,宽度,深度)。参数kernel_size(3,3)表示核的(高度,宽度),并且核深度将与图像的深度相同。
1维CNN | Conv1D
在介绍Conv1D之前,让我给你一个提示。在Conv1D中,核沿一维滑动。现在让我们考虑哪种类型的数据只需要核在一个维度上滑动并具有空间特性?
答案就是时间序列数据。让我们看一下以下数据。

该数据是从人戴在手臂上的加速度计中收集的。数据表示所有三个轴的加速度。1维CNN可以根据加速度计数据执行活动识别任务,例如人是站着,行走,跳跃等。此数据有2个维度。第一维是时间步长,另外一个是3个轴上的加速度值。
下图说明了核如何在加速度计数据上移动。每行代表某个轴的时间序列加速度。核只能沿时间轴一维移动。

以下是在keras中添加Conv1D图层的代码。
import keras
from keras.layers import Conv1D
model = keras.models.Sequential()
model.add(Conv1D(1, kernel_size=5, input_shape = (120, 3)))
model.summary()
参数input_shape(120,3)表示120个时间步骤,每个时间步骤中有3个数据点。这3个数据点是x,y和z轴的加速度。参数kernel_size为5,表示核的宽度,核高度将与每个时间步骤中的数据点数相同。
同样,1维CNN也可用于音频和文本数据,因为我们还可以将声音和文本表示为时间序列数据。请参考下图

Conv1D广泛应用于感官数据,加速度计数据就是其中之一。
3维CNN | Conv3D
在Conv3D中,核按3个维度滑动,如下所示。让我们再想想哪种数据类型需要核在3维上移动?

Conv3D主要用于3D图像数据。例如磁共振成像(MRI)数据。MRI数据被广泛用于检查大脑,脊髓,内部器官等。计算机断层扫描(CT)扫描也是3D数据的示例,它是通过组合从身体周围不同角度拍摄的一系列X射线图像而创建的。我们可以使用Conv3D对该医学数据进行分类或从中提取特征。

以下是在keras中添加Conv3D层的代码。
import keras
from keras.layers import Conv3D
model = keras.models.Sequential()
model.add(Conv3D(1, kernel_size=(3,3,3), input_shape = (128, 128, 128, 3)))
model.summary()
这里参数Input_shape(128,128,128,3)有4个维度。3D图像也是4维数据,其中第四维代表颜色通道的数量。就像平面2D图像具有3维一样,其中3维代表色彩通道。参数kernel_size(3,3,3)表示核的(高度,宽度,深度),并且核的第4维与颜色通道相同。
总结
- 在1D CNN中,核沿1个方向移动。一维CNN的输入和输出数据是二维的。主要用于时间序列数据。
- 在2D CNN中,核沿2个方向移动。2D CNN的输入和输出数据是3维的。主要用于图像数据。
- 在3D CNN中,核沿3个方向移动。3D CNN的输入和输出数据是4维的。通常用于3D图像数据(MRI,CT扫描)。
欢迎关注磐创博客资源汇总站:
http://docs.panchuang.net/
欢迎关注PyTorch官方中文教程站:
http://pytorch.panchuang.net/
了解1D和3D卷积神经网络 | Keras的更多相关文章
- 硕毕论文_基于 3D 卷积神经网络的行为识别算法研究
论文标题:基于 3D 卷积神经网络的行为识别算法研究 来源/作者机构情况: 中 国 地 质 大 学(北京),计算机学院,图像处理方向 解决问题/主要思想贡献: 1. 使用张量CP分解的原理, ...
- 基于3D卷积神经网络的人体行为理解(论文笔记)(转)
基于3D卷积神经网络的人体行为理解(论文笔记) zouxy09@qq.com http://blog.csdn.net/zouxy09 最近看Deep Learning的论文,看到这篇论文:3D Co ...
- 基于3D卷积神经网络的行为识别:3D Convolutional Neural Networks for Human Action Recognition
简介: 这是一片发表在TPAMI上的文章,可以看见作者有余凯(是百度的那个余凯吗?) 本文提出了一种3D神经网络:通过在神经网络的输入中增加时间这个维度(连续帧),赋予神经网络行为识别的功能. 相应提 ...
- 理解卷积神经网络中的输入与输出形状(Keras实现)
即使我们从理论上理解了卷积神经网络,在实际进行将数据拟合到网络时,很多人仍然对其网络的输入和输出形状(shape)感到困惑.本文章将帮助你理解卷积神经网络的输入和输出形状. 让我们看看一个例子.CNN ...
- 深度学习:Keras入门(二)之卷积神经网络(CNN)
说明:这篇文章需要有一些相关的基础知识,否则看起来可能比较吃力. 1.卷积与神经元 1.1 什么是卷积? 简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算.(具体含义或者数学公式 ...
- visualization of filters keras 基于Keras的卷积神经网络(CNN)可视化
https://adeshpande3.github.io/adeshpande3.github.io/ https://blog.csdn.net/weiwei9363/article/detail ...
- Keras实现卷积神经网络
# -*- coding: utf-8 -*- """ Created on Sun Jan 20 11:25:29 2019 @author: zhen "& ...
- 【Python】keras卷积神经网络识别mnist
卷积神经网络的结构我随意设了一个. 结构大概是下面这个样子: 代码如下: import numpy as np from keras.preprocessing import image from k ...
- 1.keras实现-->使用预训练的卷积神经网络(VGG16)
VGG16内置于Keras,可以通过keras.applications模块中导入. --------------------------------------------------------将 ...
随机推荐
- python中使用paramiko模块并实现远程连接服务器执行上传下载
paramiko模块 paramiko是用python语言写的一个模块,遵循SSH2协议,支持以加密和认证的方式,进行远程服务器的连接. 因此,如果需要使用SSH从一个平台连接到另外一个平台,进行一系 ...
- CSS——NO.1(初识CSS)
*/ * Copyright (c) 2016,烟台大学计算机与控制工程学院 * All rights reserved. * 文件名:text.cpp * 作者:常轩 * 微信公众号:Worldhe ...
- JavaScript 执行环境以及作用域链
执行环境(execution context,为简单起见,有时也称为"环境")是 JavaScript 中最为重要的一个概念.执行环境定义了变量或函数有权访问的其他数据,决定了它们 ...
- 最通俗易懂的 Java 11 新特性讲解
大多数开发者还是沉浸在 Java 8 中,而 Java 14 将要在 2020 年 3 月 17 日发布了,而我还在写着 Java 11 的新特性.Java 11 是 Java 8 之后的第一个 LT ...
- Python3——2019年全国大学生计算二级考试
Python语言程序设计二级重点(2019年版) 第一章 程序设计基本方法 IPO程序编写方法 :输入(input),输出(output),处理(process): Python程序的特点: (1)语 ...
- Web环境从Apache转Nginx后页面报404错误
问题原因: Apache支持伪静态规则在项目的入口目录有个.htaccess文件,Apache默认识别此文件内容, 但是Nginx不识别.htaccess文件,导致伪静态规则失效,从而无法解析url地 ...
- 前端每日实战:48# 视频演示如何用纯 CSS 创作一盘传统蚊香
效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/BVpvMz 可交互视频教程 此视频 ...
- 小白的springboot之路(十六)、mybatis-plus 的使用
0-前言 mybatis plus是对mybatis的增强,集成mybatis plus后,简单的CRUD和分页就不用写了,非常方便,五星推荐: 1-集成 1-1.添加依赖 <!-- .集成my ...
- Asp.Net Core 中IdentityServer4 授权中心之应用实战
一.前言 查阅了大多数相关资料,查阅到的IdentityServer4 的相关文章大多是比较简单并且多是翻译官网的文档编写的,我这里在 Asp.Net Core 中IdentityServer4 的应 ...
- vuex的使用心得
今天的工作内容-----vuex的使用心得: 都知道,对于小型的项目来说不必使用vuex,但是对于需要把共享的变量全部存储在一个对象里面,然后把这个对象放在顶层组件中以供其他组件使用.其实vuex就是 ...