最优化方法 调参方法 ml算法
梯度下降gd grid search lr
梯度上升 随机梯度下降 pca
随机梯度下降sgd  贝叶斯调参 lda
牛顿算法   knn
拟牛顿算法   kmeans
遗传算法   tree
蚁群算法    gbdt
模拟退火    xgboost
反向传播算法    lightgbm
 坐标上升?   svm
    rf

一、调参的思路:

如针对上面的问题,对x1和x2两个参数调优,假设起始点为绿色点,

1.grid search(全部交叉):计算所有上面的交叉点的模型。

2.一种沿着坐标轴的方法:首先,固定先沿着x2的方向计算,找到此轮中最优的参数x2。

第二步,固定x2,调整x1,找到最优的x1。

第三步,重复1/2步骤,直到两次迭代模型表现差距不大,停止。

3.梯度下降的思路:先计算起始点(绿点)周围的模型表现,找出表现最好的点,朝那个方向前进,直到找到最好的模型表现点。

机器学习各种算法怎么调参?

调参、最优化、ml算法(未完成)的更多相关文章

  1. adam调参

    微调 #阿尔法 "learning_rate": 3e-5, #学习率衰减 "weight_decay": 0.1,// "weight_decay& ...

  2. CatBoost算法和调参

    欢迎关注博主主页,学习python视频资源 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?co ...

  3. Auto ML自动调参

    Auto ML自动调参 本文介绍Auto ML自动调参的算法介绍及操作流程. 操作步骤 登录PAI控制台. 单击左侧导航栏的实验并选择某个实验. 本文以雾霾天气预测实验为例. 在实验画布区,单击左上角 ...

  4. k-近邻算法采用for循环调参方法

    //2019.08.02下午#机器学习算法中的超参数与模型参数1.超参数:是指机器学习算法运行之前需要指定的参数,是指对于不同机器学习算法属性的决定参数.通常来说,人们所说的调参就是指调节超参数.2. ...

  5. 贪玩ML系列之CIFAR-10调参

    调参方法:网格调参 tf.layers.conv2d()中的padding参数 取值“same”,表示当filter移出边界时,给空位补0继续计算.该方法能够更多的保留图像边缘信息.当图片较小(如CI ...

  6. xgboost使用调参

    欢迎关注博主主页,学习python视频资源 https://blog.csdn.net/q383700092/article/details/53763328 调参后结果非常理想 from sklea ...

  7. Python中Gradient Boosting Machine(GBM)调参方法详解

    原文地址:Complete Guide to Parameter Tuning in Gradient Boosting (GBM) in Python by Aarshay Jain 原文翻译与校对 ...

  8. XGB 调参基本方法

    - xgboost 基本方法和默认参数 - 实战经验中调参方法 - 基于实例具体分析 在训练过程中主要用到两个方法:xgboost.train()和xgboost.cv(). xgboost.trai ...

  9. 机器学习笔记——模型调参利器 GridSearchCV(网格搜索)参数的说明

    GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大 ...

随机推荐

  1. Unity3d游戏代码保护

    现在的游戏项目如果达到一定规模.项目比较创新方竞争对手.项目严重依赖客户端代码那么代码保护还是尽量做,如果不是也没必须瞎折腾. Unity常见代码保护机制: 1.重新编译mono,修改mono_ima ...

  2. JDK安装 - Linux环境

    JDK安装 - Linux环境 1. 下载 :https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-21331 ...

  3. MySQL数据库索引常见问题

    笔者看过很多数据库相关方面的面试题,但大多数答案都不太准确,因此决定在自己blog进行一个总结. Q1:数据库有哪些索引?优缺点是什么? 1.B树索引:大多数数据库采用的索引(innoDB采用的是b+ ...

  4. 技术沙龙|原来落地AI应用是这么回事儿!

    目前人工智能已经迈入应用落地之年,作为备受关注的话题,在重磅政策的加持下市场规模迅速扩大并渗透到各行各业的形势越发鲜明.在此背景下,作为国内不容忽视的创新企业之一,京东AI依托于NeuHub平台对数据 ...

  5. selenium破解人人登陆验证码

    from selenium import webdriverfrom PIL import Imagefrom chaojiying import Chaojiying_Clientimport ti ...

  6. 使用py-faster-rcnn训练自己的数据集

    https://www.jianshu.com/p/a672f702e596 本文记录了在ubuntu16.04下使用py-faster-rcnn来训练自己的数据集的大致过程. 在此之前,已经成功配置 ...

  7. 计算机网络(6): http cookie

    Cookie作用: 1)帮助管理用户会话信息(用户需要记录的信息:登陆状态等) 2)跟踪浏览器的行为 3)用户自定义设置 实现方式: 当用户浏览带有Cookie的网站时,网站自动为其生成一个唯一的标志 ...

  8. Pyspider的简单介绍和初使用

    Pyspider   Pyspider是由国人(binux)编写的强大的网络爬虫系统 Ptspider带有强大的WebUi / 脚本编辑器 / 任务监控器 / 项目管理器以及结果处理器.他支持多种数据 ...

  9. PyCharm 代码行出现多余的数字

    添加或取消 Ctrl + Shift + 对应的数字(1-9) 作用 相当于标签,Ctrl + 对应的数字键,可以快速定位到做了标签的代码行

  10. 题解 P2382 【化学分子式】

    题目 不懂为什么,本蒟蒻用在线算法打就一直炸...... 直到用了"半离线"算法...... 一遍就过了好吗...... 某位机房的小伙伴一遍就过了 另一位机房的小伙伴也是每次都爆 ...