题意:平面上有n个点(1<=n<=1000),你的任务是让所有n个点连通。可以新建边,费用等于两端点欧几里德距离的平方。也可以购买套餐(套餐中的点全部连通)。问最小费用。

分析:

1、先将不购买任何套餐的最小生成树的所有边(边数为cnt)存起来,目的是枚举套餐时不必再耗Kruskal算法的O(n2)复杂度,而是降低为O(cnt)。

2、二进制枚举套餐。

3、枚举套餐时,先将套餐中的边按最小生成树建边,在将不购买任何套餐的最小生成树的cnt条边建上,因为套餐中的边权值为0,所以这样处理不会影响结果。

#pragma comment(linker, "/STACK:102400000, 102400000")
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define Min(a, b) ((a < b) ? a : b)
#define Max(a, b) ((a < b) ? b : a)
const double eps = 1e-8;
inline int dcmp(double a, double b){
if(fabs(a - b) < eps) return 0;
return a > b ? 1 : -1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 1000 + 10;
const int MAXT = 10000 + 10;
using namespace std;
vector<int> v;//不选择套餐时最小生成树的边编号
int ans, n, m;
int fa[MAXN];
struct City{//城市
int x, y, id;
void read(){
scanf("%d%d", &x, &y);
}
}num[MAXN];
struct Package{//套餐
int n, cost;
int city[MAXN];
void read(){
scanf("%d%d", &n, &cost);
for(int i = 0; i < n; ++i){
scanf("%d", &city[i]);
}
}
}q[10];
struct Edge{
int from, to, dist;
void set(int f, int t, int d){
from = f;
to = t;
dist = d;
}
bool operator < (const Edge& rhs)const{
return dist < rhs.dist;
}
}e[MAXN * MAXN];
int getD(City& A, City& B){
return (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y);
}
int Find(int v){
return fa[v] = (fa[v] == v) ? v : Find(fa[v]);
}
void solve(){//二进制枚举子集
for(int i = 1; i < (1 << m); ++i){
int tmp = 0;
for(int j = 1; j <= n; ++j) fa[j] = j;//初始化并查集
for(int j = 0; j < m; ++j){
if(i & (1 << j)){
tmp += q[j].cost;
for(int a = 0; a < q[j].n; ++a){
for(int b = a + 1; b < q[j].n; ++b){
int x = Find(q[j].city[a]);
int y = Find(q[j].city[b]);
if(x == y) continue;
if(x < y) fa[y] = x;
else fa[x] = y;
}
}
}
}
int len = v.size();
for(int j = 0; j < len; ++j){
int id = v[j];
int x = Find(e[id].from);
int y = Find(e[id].to);
if(x == y) continue;
tmp += e[id].dist;
if(x < y) fa[y] = x;
else fa[x] = y;
}
ans = Min(ans, tmp);
}
}
int main(){
int T;
scanf("%d", &T);
while(T--){
scanf("%d%d", &n, &m);
for(int i = 0; i < m; ++i){
q[i].read();
}
for(int i = 1; i <= n; ++i){
num[i].read();
fa[i] = i;
}
int cnt = 0;
for(int i = 1; i <= n; ++i){
for(int j = i + 1; j <= n; ++j){
e[cnt++].set(i, j, getD(num[i], num[j]));
}
}
sort(e, e + cnt);
v.clear();
ans = 0;
for(int i = 0; i < cnt; ++i){
int x = Find(e[i].from);
int y = Find(e[i].to);
if(x == y) continue;
ans += e[i].dist;
v.push_back(i);
if(x < y) fa[y] = x;
else fa[x] = y;
}
solve();
printf("%d\n", ans);
if(T) printf("\n");
}
return 0;
}

  

UVA - 1151 Buy or Build (买还是建)(并查集+二进制枚举子集)的更多相关文章

  1. UVA 1151 Buy or Build MST(最小生成树)

    题意: 在平面上有n个点,要让所有n个点都连通,所以你要构造一些边来连通他们,连通的费用等于两个端点的欧几里得距离的平方.另外还有q个套餐,可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相 ...

  2. UVa 1151 - Buy or Build(最小生成树)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  3. UVA 1151 Buy or Build (最小生成树)

    先求出原图的最小生成树,然后枚举买哪些套餐,把一个套餐内的点相互之间边权为0,直接用并查集缩点.正确性是基于一个贪心, 在做Kruskal算法是,对于没有进入最小生成树的边,排序在它前面的边不会减少. ...

  4. UVA 1151 Buy or Build (MST最小生成树,kruscal,变形)

    题意: 要使n个点之间能够互通,要使两点直接互通需要耗费它们之间的欧几里得距离的平方大小的花费,这说明每两个点都可以使其互通.接着有q个套餐可以选,一旦选了这些套餐,他们所包含的点自动就连起来了,所需 ...

  5. UVa 1151 Buy or Build (最小生成树+二进制法暴力求解)

    题意:给定n个点,你的任务是让它们都连通.你可以新建一些边,费用等于两点距离的平方(当然越小越好),另外还有几种“套餐”,可以购买,你购买的话,那么有些边就可以连接起来, 每个“套餐”,也是要花费的, ...

  6. uva 1151 - Buy or Build poj 2784 Buy or Build(最小生成树)

    最小生成树算法简单 只是增加了一些新的东西,对于需要最小生成树算法 和中 并检查使用的一系列 还有一些更深入的了解. 方法的一些复杂问题 #include<cstdio> #include ...

  7. UVa 1151 Buy or Build【最小生成树】

    题意:给出n个点的坐标,现在需要让这n个点连通,可以直接在点与点之间连边,花费为两点之间欧几里得距离的平方,也可以选购套餐,套餐中所含的点是相互连通的 问最少的花费 首先想kruskal算法中,被加入 ...

  8. UVA 1151二进制枚举子集 + 最小生成树

    题意:平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此, 你可以新建一些边,费用等于两个端点的欧几里得距离的平方.另外还有q(0<=q<=8)个套餐(数 ...

  9. 紫书 例题 11-3 UVa 1151 (有边集的最小生成树+二进制枚举子集)

    标题指的边集是说这道题的套餐, 是由几条边构成的. 思路是先做一遍最小生成树排除边, 因为如果第一次做没有加入的边, 到后来新加入了很多权值为0的边,这些边肯定排在最前面,然后这条边的前面的那些边肯定 ...

随机推荐

  1. 如何给Sqlite添加复合主键

    如果是想两个字段组成一个复合主键的话可以如下.SQL code sqlite> create table t2 ( ...> id1 int , ...> id2 int, ...& ...

  2. MariaDB——相关概念与sql语句

    数据库变量   数据库的两个目录 数据存放目录:/var/lib/mysql/     配置文件目录:/etc/my.cnf.d/ 查看数据库的变量 show global variables lik ...

  3. ubuntu最基本的软件

    输入法: https://www.cnbawwwlogs.com/zlslch/p/6943318.html qq: http://www.linuxidc.com/Linux/2016-09/134 ...

  4. navcat工具常用快捷键

     navcat工具常用快捷键 ctrl + n: 打开新查询窗口 ctrl + shit + r: 只运行选中的语句 ctrl + /: 注释 (选中要注释的行,然后用快捷键注释) ctrl + sh ...

  5. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 辅助类:显示和隐藏内容

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  6. Windows驱动开发-设备读写方式

    设备读写方式共三种: 方式 Flag 特点 缓冲区方式读写 DO_BUFFERED_IO I/O管理器先创建一个与用户模式数据缓冲区大小相等的系统缓冲区.而你的驱动程序将使用这个系统缓冲区工作.I/O ...

  7. Mozilla Firefox 68 正式发布下载:对刚Chrome

    Mozilla Firefox 68开源和跨平台Web浏览器现在正式发布,可以下载适用于GNU/Linux,Mac和Windows平台的Firefox 68了. Firefox 68网络浏览器现在可以 ...

  8. Codeforces 590 A:Median Smoothing

    A. Median Smoothing time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  9. Visual Studio中的“build”、“rebuild”、“clean”的区别

    区别 rebuild基本相当于clean+build build只针对修改过的文件进行编译,rebuild会对所有文件编译(无论是否修改). clean 删除中间和输出文件,中间文件是指一些生成应用的 ...

  10. jvm问题汇总

    1.软引用.弱引用.虚引用-他们的特点及应用场景?