对python里的装饰器
内裤可以用来遮羞,但是到了冬天它没法为我们防风御寒,聪明的人们发明了长裤,有了长裤后宝宝再也不冷了,装饰器就像我们这里说的长裤,在不影响内裤作用的前提下,给我们的身子提供了保暖的功效。
再回到我们的主题
装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象。它经常用于有切面需求的场景,比如:插入日志、性能测试、事务处理、缓存、权限校验等场景。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。
先来看一个简单例子:
def foo():
print('i am foo')
现在有一个新的需求,希望可以记录下函数的执行日志,于是在代码中添加日志代码:
def foo():
print('i am foo')
logging.info("foo is running")
bar()、bar2()也有类似的需求,怎么做?再写一个logging在bar函数里?这样就造成大量雷同的代码,为了减少重复写代码,我们可以这样做,重新定义一个函数:专门处理日志 ,日志处理完之后再执行真正的业务代码
def use_logging(func):
logging.warn("%s is running" % func.name)
func()
def bar():
print('i am bar')
use_logging(bar)
逻辑上不难理解, 但是这样的话,我们每次都要将一个函数作为参数传递给use_logging函数。而且这种方式已经破坏了原有的代码逻辑结构,之前执行业务逻辑时,执行运行bar(),但是现在不得不改成use_logging(bar)。那么有没有更好的方式的呢?当然有,答案就是装饰器。
简单装饰器
def use_logging(func):
def wrapper(*args, **kwargs):
logging.warn("%s is running" % func.__name__)
return func(*args, **kwargs)
return wrapper
def bar():
print('i am bar')
bar = use_logging(bar)
bar()
函数use_logging就是装饰器,它把执行真正业务方法的func包裹在函数里面,看起来像bar被use_logging装饰了。在这个例子中,函数进入和退出时 ,被称为一个横切面(Aspect),这种编程方式被称为面向切面的编程(Aspect-Oriented Programming)。
@符号是装饰器的语法糖,在定义函数的时候使用,避免再一次赋值操作
def use_logging(func):
def wrapper(*args, **kwargs):
logging.warn("%s is running" % func.__name__)
return func(*args)
return wrapper
@use_logging
def foo():
print("i am foo")
@use_logging
def bar():
print("i am bar")
bar()
如上所示,这样我们就可以省去bar = use_logging(bar)这一句了,直接调用bar()即可得到想要的结果。如果我们有其他的类似函数,我们可以继续调用装饰器来修饰函数,而不用重复修改函数或者增加新的封装。这样,我们就提高了程序的可重复利用性,并增加了程序的可读性。
装饰器在Python使用如此方便都要归因于Python的函数能像普通的对象一样能作为参数传递给其他函数,可以被赋值给其他变量,可以作为返回值,可以被定义在另外一个函数内。
带参数的装饰器
装饰器还有更大的灵活性,例如带参数的装饰器:在上面的装饰器调用中,比如@use_logging,该装饰器唯一的参数就是执行业务的函数。装饰器的语法允许我们在调用时,提供其它参数,比如@decorator(a)。这样,就为装饰器的编写和使用提供了更大的灵活性。
def use_logging(level):
def decorator(func):
def wrapper(args, **kwargs):
if level == "warn":
logging.warn("%s is running" % func.name)
return func(args)
return wrapper
return decorator
@use_logging(level="warn")
def foo(name='foo'):
print("i am %s" % name)
foo()
上面的use_logging是允许带参数的装饰器。它实际上是对原有装饰器的一个函数封装,并返回一个装饰器。我们可以将它理解为一个含有参数的闭包。当我 们使用@use_logging(level="warn")调用的时候,Python能够发现这一层的封装,并把参数传递到装饰器的环境中。
类装饰器
再来看看类装饰器,相比函数装饰器,类装饰器具有灵活度大、高内聚、封装性等优点。使用类装饰器还可以依靠类内部的__call__方法,当使用 @ 形式将装饰器附加到函数上时,就会调用此方法。
class Foo(object):
def init(self, func):
self._func = func
def call(self):
print ('class decorator runing')
self._func()
print ('class decorator ending')
@Foo
def bar():
print ('bar')
bar()
functools.wraps
使用装饰器极大地复用了代码,但是他有一个缺点就是原函数的元信息不见了,比如函数的docstring、name、参数列表,先看例子:
装饰器
def logged(func):
def with_logging(args, **kwargs):
print func.name + " was called"
return func(args, **kwargs)
return with_logging
函数
@logged
def f(x):
"""does some math"""
return x + x * x
该函数完成等价于:
def f(x):
"""does some math"""
return x + x * x
f = logged(f)
不难发现,函数f被with_logging取代了,当然它的docstring,__name__就是变成了with_logging函数的信息了。
print f.name # prints 'with_logging'
print f.doc # prints None
这个问题就比较严重的,好在我们有functools.wraps,wraps本身也是一个装饰器,它能把原函数的元信息拷贝到装饰器函数中,这使得装饰器函数也有和原函数一样的元信息了。
from functools import wraps
def logged(func):
@wraps(func)
def with_logging(args, **kwargs):
print func.name + " was called"
return func(args, **kwargs)
return with_logging
@logged
def f(x):
"""does some math"""
return x + x * x
print f.name # prints 'f'
print f.doc # prints 'does some math'
内置装饰器
@staticmathod、@classmethod、@property
装饰器的顺序
@a
@b
@c
def f ():
等效于
f = a(b(c(f)))
如何理解Python装饰器? - 刘志军的回答 - 知乎
https://www.zhihu.com/question/26930016/answer/99243411
对python里的装饰器的更多相关文章
- Python里的装饰器
装饰器 装饰器是干什么用的? 装饰器可以在不修改某个函数的情况下,给函数添加功能. 形象点来说,从前有一个王叔叔,他一个人住在家里,每天打扫家,看书.于是定义如下一个函数: def uncle_wan ...
- python高级之装饰器
python高级之装饰器 本节内容 高阶函数 嵌套函数及闭包 装饰器 装饰器带参数 装饰器的嵌套 functools.wraps模块 递归函数被装饰 1.高阶函数 高阶函数的定义: 满足下面两个条件之 ...
- 第二篇:python高级之装饰器
python高级之装饰器 python高级之装饰器 本节内容 高阶函数 嵌套函数及闭包 装饰器 装饰器带参数 装饰器的嵌套 functools.wraps模块 递归函数被装饰 1.高阶函数 高阶函 ...
- Day11 Python基础之装饰器(高级函数)(九)
在python中,装饰器.生成器和迭代器是特别重要的高级函数 https://www.cnblogs.com/yuanchenqi/articles/5830025.html 装饰器 1.如果说装 ...
- 【Python】【装饰器】
Python中的装饰器是你进入Python大门的一道坎,不管你跨不跨过去它都在那里. 为什么需要装饰器 我们假设你的程序实现了say_hello()和say_goodbye()两个函数. def sa ...
- Python 语法糖装饰器的应用
Python中的装饰器是你进入Python大门的一道坎,不管你跨不跨过去它都在那里. 为什么需要装饰器 我们假设你的程序实现了say_hello()和say_goodbye()两个函数. def sa ...
- python进阶04 装饰器、描述器、常用内置装饰器
python进阶04 装饰器.描述器.常用内置装饰器 一.装饰器 作用:能够给现有的函数增加功能 如何给一个现有的函数增加执行计数的功能 首先用类来添加新功能 def fun(): #首先我们定义一个 ...
- python 多个装饰器的调用顺序
python 多个装饰器的调用顺序 一般情况下,在函数中可以使用一个装饰器,但是有时也会有两个或两个以上的装饰器.多个装饰器装饰的顺序是从里到外(就近原则),而调用的顺序是从外到里(就远原则). 原代 ...
- python函数闭包-装饰器-03
可调用对象 callable() # 可调用的(这个东西加括号可以执行特定的功能,类和函数) 可调用对象即 callable(对象) 返回为 True 的对象 x = 1 print(cal ...
随机推荐
- 【蓝桥】第八届C语言C组第7题 Excel地址(进制变形题,stack()简单使用)转载
标题: Excel地址 Excel单元格的地址表示很有趣,它使用字母来表示列号. 比如, A表示第1列, B表示第2列, Z表示第26列, AA表示第27列, AB表示第28列, BA表示第53列, ...
- C++代做,C++编程代做,C++程序代做,留学生C++ Lab代写
C++代做,C++编程代做,C++程序代做 我们主要面向留学生,广泛接美加澳国内港台等地编程作业代写,中英文均可. C语言代写 C++代写 Python代写 Golang代写 Java代写 一年半的时 ...
- MapReduce On Yarn的执行流程
1.概述 Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce等运算程序则相当于运行于操作系统之上的应用程序. Yarn的架构如下图所示: ...
- 08 SSM整合案例(企业权限管理系统):06.产品操作
04.AdminLTE的基本介绍 05.SSM整合案例的基本介绍 06.产品操作 07.订单操作 08.用户操作 09.权限控制 10.权限关联与控制 11.AOP日志 06.产品操作 SSM 环境搭 ...
- POJ 2752:Seek the Name, Seek the Fame
Seek the Name, Seek the Fame Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13619 Accept ...
- 官网英文版学习——RabbitMQ学习笔记(七)Topic
在上一篇中使用直接交换器改进了我们的系统,使得它能够有选择的进行接收消息,但它仍然有局限性——它不能基于多个条件进行路由.本节我们就进行能够基于多个条件进行路由的topics exchange学习. ...
- qvector 转为数组
在 qt 中想要把 qvector 转化为原始数据构成的数组,有几种方法: 直接使用循环读取 double *bytes = new double[vec.size()]; for (int i = ...
- Oozie笔记
简介 Oozie 是用于 Hadoop 平台的开源的工作流调度引擎. 用于管理 Hadoop 属于web应用程序, 由 Oozie client 和 Oozie Server 两个组件构成. Oozi ...
- Elasticsearch 使用集群 - 列出索引
章节 Elasticsearch 基本概念 Elasticsearch 安装 Elasticsearch 使用集群 Elasticsearch 健康检查 Elasticsearch 列出索引 Elas ...
- android 开发学习3
DAO:DATA ACCESS OBJECT getApplication()和MainActivity.this 是两种不同的context,也是最常见的两种.第一种中context的生命周期与Ap ...