形如

$ {\displaystyle \frac{dy}{dx}+p(x)y=q(x)y^n(n\neq 0,1) \ \ \ \ \ (1)}$

的方程为 Bernoulli 方程.现在我们考虑其解法.当 $ y\neq 0$ 时,(1) 的两边同时乘以 $ y^{-n}$,得到

$ {\displaystyle y^{-n}\frac{dy}{dx}+y^{-n+1}p(x)=q(x). \ \ \ \ \ (2)}$

令 $ z=y^{-n+1}$,可得

$ {\displaystyle \frac{dz}{dx}=(1-n)y^{-n}\frac{dy}{dx}. }$

因此,(2) 化为

$ {\displaystyle \frac{1}{1-n}\frac{dz}{dx}+zp(x)=q(x). \ \ \ \ \ (3)}$

这就化为了关于 $ x$ 和 $ z$ 的一阶线性方程.

化 Bernoulli 方程为一阶线性微分方程的更多相关文章

  1. Python-sympy科学计算与数据处理(方程,微分,微分方程,积分)

    方程 a,b,c,x = symbols("a b c x") my_eq = Eq(a*x**2+b*x+c,0) solve(my_eq,x) Out[12]: [(-b + ...

  2. Google Code Jam 2008 Round 1A C Numbers(矩阵快速幂+化简方程,好题)

    Problem C. Numbers This contest is open for practice. You can try every problem as many times as you ...

  3. math课本复习

    第七章 微分方程 第一节 微分方程的基本概念    未知函数.未知函数的倒数与自变量之间的关系的方程,叫做微分方程. 第二节 可分离变量的微分方程 第三节 齐次方程 第四节 一阶线性微分方程 总结:任 ...

  4. poj2115-C Looooops(扩展欧几里德算法)

    本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...

  5. 微分方程——基本概念和常微分方程的发展史

    1.2 基本概念和常微分方程的发展史 自变量.未知函数均为实值的微分方程称为实值微分方程:未知函数取复值或变量及未知函数均取复值时称为复值微分方程.若无特别声明,以下均指实变量的实值微分方程. 1.2 ...

  6. 线性SVM的推导

    线性SVM算法的一般过程 线性SVM的推导 超平面方程 SVM是用来分类的.给定一系列输入数据(n维向量),需要找到一个切分界线(n-1维的超平面),这里假定数据是线性可分的.比如,二维数据的超平面是 ...

  7. java实现图像的直方图均衡以及灰度线性变化,灰度拉伸

    写了四个方法,分别实现图片的灰度化,直方图均衡,灰度线性变化,灰度拉伸,其中好多地方特别是灰度拉伸这一块觉得自己实现的有问题,请大大们多多指教. import java.awt.Image; impo ...

  8. 【BZOJ4004】装备购买(线性基)

    [BZOJ4004]装备购买(线性基) 题面 BZOJ 洛谷 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am ...

  9. 线性判别函数-Fisher 线性判别

    这是我在上模式识别课程时的内容,也有参考这里. 线性判别函数的基本概念 判别函数为线性的情况的一般表达式 式中x是d 维特征向量,又称样本向量, 称为权向量, 分别表示为 是个常数,称为阈值权. 设样 ...

随机推荐

  1. 锤子科技向OpenBSD基金会捐款195 万

    导读 专注于提供 OpenBSD 资讯的网站 OpenBSD Journal 昨日报道了锤子科技成为 OpenBSD 基金会 2019 年首位铱金捐赠者的消息. 根据 OpenBSD Journal ...

  2. JavaWeb面试题(转)

    1.Tomcat的优化经验 答:去掉对web.xml的监视,把JSP提前编辑成Servlet:有富余物理内存的情况下,加大Tomcat使用的 JVM内存. 2.什么是Servlet? 答:可以从两个方 ...

  3. 时间戳和LocalDateTime和Date互转和格式化

    一 前言 续上篇java8在日常开发中使用LocalDate和LocalTime[https://blog.csdn.net/youku1327/article/details/102771936]中 ...

  4. centos7安装配置supervisor守护进程

    yum install Supervisor supervisord -c /etc/supervisord.conf 进入 cd /etc 目录 找到supervisord.conf 配置文件 和 ...

  5. 六十一、SAP中的逻辑运算与进制转换

    一.代码如下 二.16进制计算过程如下 三.计算结果为16进制的11,也就是10进制的17

  6. 四十一、在SAP中添加多条件选择框

    一.代码如下: 二.其中我们的文本替换内容如下 三.需要注意的是波浪线的用法,以及区域的添加方法.运行程序,显示如下 四.不勾选时,查询出来是去掉国际的 五.勾选之后,查询的是全部的 六.显示如下 七 ...

  7. Python 打开文件(File Open)

    版权所有,未经许可,禁止转载 章节 Python 介绍 Python 开发环境搭建 Python 语法 Python 变量 Python 数值类型 Python 类型转换 Python 字符串(Str ...

  8. js原型链理解(4)-经典继承

    经典继承就是组合继承,就是组合构造函数和原型链的优点混合继承. 1.避免引用类型的属性初始化 2.避免相同方法的多次初始化 function Super(name){ this.ages = [100 ...

  9. 【Python】【Django】登录用户-链接Mysql

  10. ZOJ - 2671 Cryptography(线段树+求区间矩阵乘积)

    题意:已知n个矩阵(下标从1开始),求下标x~y区间矩阵的乘积.最多m次询问,n ( 1 <= n <= 30,000) and m ( 1 <= m <= 30,000). ...