化 Bernoulli 方程为一阶线性微分方程
形如
$ {\displaystyle \frac{dy}{dx}+p(x)y=q(x)y^n(n\neq 0,1) \ \ \ \ \ (1)}$
的方程为 Bernoulli 方程.现在我们考虑其解法.当 $ y\neq 0$ 时,(1) 的两边同时乘以 $ y^{-n}$,得到
$ {\displaystyle y^{-n}\frac{dy}{dx}+y^{-n+1}p(x)=q(x). \ \ \ \ \ (2)}$
令 $ z=y^{-n+1}$,可得
$ {\displaystyle \frac{dz}{dx}=(1-n)y^{-n}\frac{dy}{dx}. }$
因此,(2) 化为
$ {\displaystyle \frac{1}{1-n}\frac{dz}{dx}+zp(x)=q(x). \ \ \ \ \ (3)}$
这就化为了关于 $ x$ 和 $ z$ 的一阶线性方程.
化 Bernoulli 方程为一阶线性微分方程的更多相关文章
- Python-sympy科学计算与数据处理(方程,微分,微分方程,积分)
方程 a,b,c,x = symbols("a b c x") my_eq = Eq(a*x**2+b*x+c,0) solve(my_eq,x) Out[12]: [(-b + ...
- Google Code Jam 2008 Round 1A C Numbers(矩阵快速幂+化简方程,好题)
Problem C. Numbers This contest is open for practice. You can try every problem as many times as you ...
- math课本复习
第七章 微分方程 第一节 微分方程的基本概念 未知函数.未知函数的倒数与自变量之间的关系的方程,叫做微分方程. 第二节 可分离变量的微分方程 第三节 齐次方程 第四节 一阶线性微分方程 总结:任 ...
- poj2115-C Looooops(扩展欧几里德算法)
本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...
- 微分方程——基本概念和常微分方程的发展史
1.2 基本概念和常微分方程的发展史 自变量.未知函数均为实值的微分方程称为实值微分方程:未知函数取复值或变量及未知函数均取复值时称为复值微分方程.若无特别声明,以下均指实变量的实值微分方程. 1.2 ...
- 线性SVM的推导
线性SVM算法的一般过程 线性SVM的推导 超平面方程 SVM是用来分类的.给定一系列输入数据(n维向量),需要找到一个切分界线(n-1维的超平面),这里假定数据是线性可分的.比如,二维数据的超平面是 ...
- java实现图像的直方图均衡以及灰度线性变化,灰度拉伸
写了四个方法,分别实现图片的灰度化,直方图均衡,灰度线性变化,灰度拉伸,其中好多地方特别是灰度拉伸这一块觉得自己实现的有问题,请大大们多多指教. import java.awt.Image; impo ...
- 【BZOJ4004】装备购买(线性基)
[BZOJ4004]装备购买(线性基) 题面 BZOJ 洛谷 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am ...
- 线性判别函数-Fisher 线性判别
这是我在上模式识别课程时的内容,也有参考这里. 线性判别函数的基本概念 判别函数为线性的情况的一般表达式 式中x是d 维特征向量,又称样本向量, 称为权向量, 分别表示为 是个常数,称为阈值权. 设样 ...
随机推荐
- P1054 求平均值
P1054 求平均值 转跳点:
- s5pc100开发板Nand flash移植
相关软件下载地址:http://pan.baidu.com/s/16yo8Y fsc100开发板 交叉编译工具:arm-cortex_a8-linux-gnueabi-gcc 添加针对我们平台 ...
- Flask—路由的注册方法
第一种注册方法 from flask import Flask app = Flask(__name__) @app.route("/hello") # 第一种注册方法 def h ...
- 066-PHP通过函数名调用函数
<?php function hello(){ //定义函数 echo '<br />Hello!<br />'; } function hellophp(){ //定义 ...
- 类的始祖Object
一.概述 Object时java中顶级父类,也是唯一没有父类的类:它是整个java中最基本的类,在java中所有的类都默认继承了Object. 二.重要方法 1.clone方法 克隆出一个新的对象. ...
- vue 中 {{}} 和 v-text 和 v-html 区别
data: { message:'<h3>我是一只小小小小鸟!</h3>' }, <div class="" >{{message}}</ ...
- arm安装cuda9.0,tensorflow-gpu, jetson tx2安装Jetpack踩坑合集
因为要在arm(aarch64)架构的linux环境中安装tensorflow-gpu,但是官方tf网上没有对应的版本,所以我们找了好久,找到一个其他人编译好的tensorflow on arm的gi ...
- Kubernetes1-K8s的简单介绍(转载)
一.简介 1.什么是Kubernetes 简称K8s,用8代替8个字符"ubernerte"而成的速写,K8s是一个开源的容器编排平台,它是一个跨主机集群的开源容器调度平台,用于管 ...
- BZOJ:1878: [SDOI2009]HH的项链
题解:解法一:莫队 解法二:按区间左端点排序,让区间内最左边的贝壳对答案产生贡献,树状数组维护,转移对答案产生贡献的贝壳位置 #include<iostream> #include< ...
- Golang---sort包
Sort 包介绍 Go 语言标准库 sort 包中实现了几种基本的排序算法:插入排序.快速排序和堆排序,但是在使用 sort 包进行排序时无需具体考虑使用哪种排序方式,因为该方法会根据传入的排序的数据 ...