Tensorflow机器学习入门——MINIST数据集识别(卷积神经网络)
#自动下载并加载数据
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
import tensorflow as tf # truncated_normal: https://www.cnblogs.com/superxuezhazha/p/9522036.html
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) #conv2d: https://blog.csdn.net/qq_30934313/article/details/86626050
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') #max_pool: https://blog.csdn.net/coder_xiaohui/article/details/78025379
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME') x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])
keep_prob = tf.placeholder("float") #卷积池化1
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) #卷积池化2
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) #全连接层1
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #dropout:https://blog.csdn.net/yangfengling1023/article/details/82911306
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #全连接层2
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #误差优化
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #计算准确率
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #训练
with tf.Session() as sess:
init = tf.initialize_all_variables()
sess.run(init)
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
print ("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print ("test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
Tensorflow机器学习入门——MINIST数据集识别(卷积神经网络)的更多相关文章
- Tensorflow机器学习入门——MINIST数据集识别
参考网站:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html #自动下载并加载数据 from tensorflow.example ...
- Tensorflow机器学习入门——cifar10数据集的读取、展示与保存
基本信息 官网:http://www.cs.toronto.edu/~kriz/cifar.html 共60000张图片:50000张用于训练.10000张用于测试 图片大小为:32X32 数据集图片 ...
- 手写数字识别 卷积神经网络 Pytorch框架实现
MNIST 手写数字识别 卷积神经网络 Pytorch框架 谨此纪念刚入门的我在卷积神经网络上面的摸爬滚打 说明 下面代码是使用pytorch来实现的LeNet,可以正常运行测试,自己添加了一些注释, ...
- MNIST数据集上卷积神经网络的简单实现(使用PyTorch)
设计的CNN模型包括一个输入层,输入的是MNIST数据集中28*28*1的灰度图 两个卷积层, 第一层卷积层使用6个3*3的kernel进行filter,步长为1,填充1.这样得到的尺寸是(28+1* ...
- 在 TensorFlow 中实现文本分类的卷积神经网络
在TensorFlow中实现文本分类的卷积神经网络 Github提供了完整的代码: https://github.com/dennybritz/cnn-text-classification-tf 在 ...
- 在TensorFlow中实现文本分类的卷积神经网络
在TensorFlow中实现文本分类的卷积神经网络 Github提供了完整的代码: https://github.com/dennybritz/cnn-text-classification-tf 在 ...
- TensorFlow.NET机器学习入门【5】采用神经网络实现手写数字识别(MNIST)
从这篇文章开始,终于要干点正儿八经的工作了,前面都是准备工作.这次我们要解决机器学习的经典问题,MNIST手写数字识别. 首先介绍一下数据集.请首先解压:TF_Net\Asset\mnist_png. ...
- TensorFlow.NET机器学习入门【6】采用神经网络处理Fashion-MNIST
"如果一个算法在MNIST上不work,那么它就根本没法用:而如果它在MNIST上work,它在其他数据上也可能不work". -- 马克吐温 上一篇文章我们实现了一个MNIST手 ...
- TensorFlow.NET机器学习入门【3】采用神经网络实现非线性回归
上一篇文章我们介绍的线性模型的求解,但有很多模型是非线性的,比如: 这里表示有两个输入,一个输出. 现在我们已经不能采用y=ax+b的形式去定义一个函数了,我们只能知道输入变量的数量,但不知道某个变量 ...
随机推荐
- wcftestclient test soap API
soap 类API测试方法: 1. 打开developer command prompt, 输入:wcftestclient 2. 选中“My Service Project”, 再Add servi ...
- 学习笔记(25)- NLP的几个概念
NLP的几个概念 从技术研究的角度,简单介绍自然语言处理的几个概念 1. 对抗学习 主要指对抗生成网络. 2个主要构成:判别器.生成器 判别模型尽可能提取特征正确率增加的模型,生成模型尽可能" ...
- 【struts 报错】 No action config found for the specified url
1 type Exception report message org.apache.struts.chain.commands.InvalidPathException: No action con ...
- 洛谷 P1843 奶牛晒衣服(二分答案)
嗯... 题目链接:https://www.luogu.com.cn/problem/P1843 我们二分枚举时间,看看那些衣服在蒸发后还要用烘干机,则用cnt记录它的时间. 注意w数组在操作中不能变 ...
- 一个基础的问题 多个$(function(){})里面的函数 为什么在下一个$(function(){})里没法执行。
先看下例子 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <tit ...
- 缓存验证Last-Modified和Etag的使用
缓存工作示意图: 在http协议里面,数据的验证方式,主要有两个验证头:Last-Modified 和 Etag. Last-Modified 配合Last-Modified-Since或者If-Un ...
- 攻防世界 web 进阶区 刷题记录
1.Training-WWW-Robots 题目提示了robots协议,直接访问robots.txt 继续访问fl0g.php 2.baby_web 题目描述:想想初始页面是哪个 百度搜了下,inde ...
- Python学习第二十四课——Mysql 外键约束
外键:主要是关联两个表的 举个栗子:在建表中创建外键 -- 添加外键例子 CREATE TABLE teacher( id TINYINT PRIMARY KEY auto_increment, na ...
- JavaScript相关
用文本编辑软件和浏览器就能开发和调试JavaScript代码 Node.js 在浏览器之外(服务器端)独立运行Ja¬vaScript代码的Node.js于2009年问世,一个独立的JavaScrip ...
- iOS 增强程序健壮性 - - 使用 NullSafe 对 <null> 处理
在项目开发中,和服务端交互数据时,若服务端数据为空时,会出现 <null>,客户端解析时会 Crash,为了增强程序的健壮性,减少 Crash 的发生,可以使用 NullSafe 这个类别 ...