Tensorflow机器学习入门——MINIST数据集识别(卷积神经网络)
#自动下载并加载数据
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
import tensorflow as tf # truncated_normal: https://www.cnblogs.com/superxuezhazha/p/9522036.html
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) #conv2d: https://blog.csdn.net/qq_30934313/article/details/86626050
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') #max_pool: https://blog.csdn.net/coder_xiaohui/article/details/78025379
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME') x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])
keep_prob = tf.placeholder("float") #卷积池化1
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
x_image = tf.reshape(x, [-1,28,28,1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) #卷积池化2
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) #全连接层1
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) #dropout:https://blog.csdn.net/yangfengling1023/article/details/82911306
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) #全连接层2
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv=tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #误差优化
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #计算准确率
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #训练
with tf.Session() as sess:
init = tf.initialize_all_variables()
sess.run(init)
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
print ("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) print ("test accuracy %g"%accuracy.eval(feed_dict={ x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
Tensorflow机器学习入门——MINIST数据集识别(卷积神经网络)的更多相关文章
- Tensorflow机器学习入门——MINIST数据集识别
参考网站:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html #自动下载并加载数据 from tensorflow.example ...
- Tensorflow机器学习入门——cifar10数据集的读取、展示与保存
基本信息 官网:http://www.cs.toronto.edu/~kriz/cifar.html 共60000张图片:50000张用于训练.10000张用于测试 图片大小为:32X32 数据集图片 ...
- 手写数字识别 卷积神经网络 Pytorch框架实现
MNIST 手写数字识别 卷积神经网络 Pytorch框架 谨此纪念刚入门的我在卷积神经网络上面的摸爬滚打 说明 下面代码是使用pytorch来实现的LeNet,可以正常运行测试,自己添加了一些注释, ...
- MNIST数据集上卷积神经网络的简单实现(使用PyTorch)
设计的CNN模型包括一个输入层,输入的是MNIST数据集中28*28*1的灰度图 两个卷积层, 第一层卷积层使用6个3*3的kernel进行filter,步长为1,填充1.这样得到的尺寸是(28+1* ...
- 在 TensorFlow 中实现文本分类的卷积神经网络
在TensorFlow中实现文本分类的卷积神经网络 Github提供了完整的代码: https://github.com/dennybritz/cnn-text-classification-tf 在 ...
- 在TensorFlow中实现文本分类的卷积神经网络
在TensorFlow中实现文本分类的卷积神经网络 Github提供了完整的代码: https://github.com/dennybritz/cnn-text-classification-tf 在 ...
- TensorFlow.NET机器学习入门【5】采用神经网络实现手写数字识别(MNIST)
从这篇文章开始,终于要干点正儿八经的工作了,前面都是准备工作.这次我们要解决机器学习的经典问题,MNIST手写数字识别. 首先介绍一下数据集.请首先解压:TF_Net\Asset\mnist_png. ...
- TensorFlow.NET机器学习入门【6】采用神经网络处理Fashion-MNIST
"如果一个算法在MNIST上不work,那么它就根本没法用:而如果它在MNIST上work,它在其他数据上也可能不work". -- 马克吐温 上一篇文章我们实现了一个MNIST手 ...
- TensorFlow.NET机器学习入门【3】采用神经网络实现非线性回归
上一篇文章我们介绍的线性模型的求解,但有很多模型是非线性的,比如: 这里表示有两个输入,一个输出. 现在我们已经不能采用y=ax+b的形式去定义一个函数了,我们只能知道输入变量的数量,但不知道某个变量 ...
随机推荐
- JAVA基础学习(3)之循环
3循环 3.1循环 3.1.1循环 一直要做的行为进行循环 3.1.2数数字 while(){}判断是否进行 数数字:number/10 //数数字Scanner in = new Scanner(S ...
- Hadoop之伪分布式安装
一.Hadoop的安装模式有3种 ①单机模式:不能使用HDFS,只能使用MapReduce,所以单击模式主要用于测试MR程序. ②伪分布式模式:用多个线程模拟真实多台服务器,即模拟真实的完全分布式环境 ...
- Python 命令行参数的输入方式(使用pycharm)
形式一: 第一个红色框为命令行参数 第二个框为控制台模式(Terminal) 形式二 点击运行:点击红色框 编辑配置 如下图:红色框即为设置的命令行参数
- 操作系统OS - 阻塞(Blocking)非阻塞(Non-Blocking)与同步(Synchronous)异步(Asynchronous)
参考: http://blog.jobbole.com/103290/ https://www.zhihu.com/question/19732473/answer/23434554 http://b ...
- JS中 逻辑或 || 逻辑与 && 的使用方法总结
JS中 逻辑或 || 逻辑与 && 的使用方法总结 //1.在if判断中 //if(1==1 || 2==3){}//->两个条件中只要有一个条件为真,整体就为真 "或 ...
- cf 908B
B - New Year and Buggy Bot 思路:刚开始看到这个题的时候,一头雾水,也不知道要干什么,后来百度翻译了了一遍,看明白了,不得不说自己的英语太差了,好了,步入正题: 给你n行m列 ...
- 在Ubuntu_meta 16.04中设置默认Python3.5的命令
ubuntu_meta 默认是安装了python2.7 和python3.5两个版本 查看ubuntu的python版本,默认版本是python2.7 输入:python 直接执行这两个命令即可: s ...
- Docker 安装 Kibana
使用和 elasticsearch 相同版本镜像 7.4.1 (不一样可能会出现问题) 1.下载Kibana镜像 # 下载Kibana镜像 docker pull kibana: # 查看镜像 do ...
- HDU 4699 Editor(模拟 对顶栈)
题目大意: 给定一个整数序列 维护5种操作 次数<1e6 I x: 光标位置插入x 然后光标位于x之后 D: 删除光标前一个数 L: 光标左移 R: 光标右移 Q k: 询问位置k之前的最大前缀 ...
- js里常见的三种请求方式$.ajax、$.post、$.get分析
$.post和$.get是$.ajax的一种特殊情况: $.post和$.get请求都是异步请求,回调函数里写return来返回值是无意义的, 回调函数里对外部变量进行赋值也是无意义的. 即使是$.a ...