sklearn调用逻辑回归算法
1、逻辑回归算法即可以看做是回归算法,也可以看作是分类算法,通常用来解决分类问题,主要是二分类问题,对于多分类问题并不适合,也可以通过一定的技巧变形来间接解决。
2、决策边界是指不同分类结果之间的边界线(或者边界实体),它具体的表现形式一定程度上说明了算法训练模型的过拟合程度,我们可以通过决策边界来调整算法的超参数。



注解:左边逻辑回归拟合决策边界嘈杂冗余说明过拟合,右边决策边界分层清晰说明拟合度好
3、在逻辑回归中随着算法的复杂度不断地提高,其算法的过拟合也会越来越严重,为了避免这个现象,我们在逻辑回归中也需要进行正则化,以减小整体拟合的均方差,减少训练的过拟合现象。因此sklearn中调用逻辑回归时含有三个重要的超参数degree(多项式的最高次数),C(正则化系数)以及penalty(正则化的方式l1/l2)

4、sklearn中逻辑回归使用的正则化方式如下:
import numpy as np
import matplotlib.pyplot as plt
#定义概率转换函数sigmoid函数
def sigmoid(t):
return 1/(1+np.exp(-t))
x=np.linspace(-10,10,100)
y=sigmoid(x)
plt.figure()
plt.plot(x,y,"r",label="Sigmoid")
plt.legend(loc=2)
plt.show()
from sklearn import datasets
d=datasets.load_iris()
x=d.data
y=d.target
x=x[y<2,:2]
y=y[y<2]
#定义机器学习算法的决策边界输出函数
def plot_decision_boundary(model,axis):
x0,x1=np.meshgrid(
np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)).reshape(-1,1),
np.linspace(axis[2],axis[3], int((axis[3] - axis[2]) * 100)).reshape(-1,1)
)
x_new=np.c_[x0.ravel(),x1.ravel()]
y_pre=model.predict(x_new)
zz=y_pre.reshape(x0.shape)
from matplotlib.colors import ListedColormap
cus=ListedColormap(["#EF9A9A","#FFF59D","#90CAF9"])
plt.contourf(x0,x1,zz,cmap=cus)
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=666)
from sklearn.neighbors import KNeighborsClassifier
knn1=KNeighborsClassifier()
knn1.fit(x_train,y_train)
plot_decision_boundary(knn1,axis=[4,8,1,5])
plt.scatter(x[y==0,0],x[y==0,1],color="r")
plt.scatter(x[y==1,0],x[y==1,1],color="g")
plt.show()
knn2=KNeighborsClassifier(n_neighbors=50) #k越大,模型越简单,也意味着过拟合的程度越轻,决策边界越清晰
knn2.fit(d.data[:,:2],d.target)
x=d.data
y=d.target
plot_decision_boundary(knn2,axis=[4,8,1,5])
plt.scatter(x[y==0,0],x[y==0,1],color="r")
plt.scatter(x[y==1,0],x[y==1,1],color="g")
plt.scatter(x[y==2,0],x[y==2,1],color="b")
plt.show() #逻辑回归添加多项式回归
import numpy as np
import matplotlib.pyplot as plt
np.random.seed=666
x=np.random.normal(0,1,size=(100,2))
y=np.array(x[:,0]**2+x[:,1]**2<1.5,dtype="int")
knn2=KNeighborsClassifier()
knn2.fit(x,y)
plot_decision_boundary(knn2,axis=[-4,4,-3,3])
plt.scatter(x[y==0,0],x[y==0,1],color="r")
plt.scatter(x[y==1,0],x[y==1,1],color="g")
plt.show() ### sklearn中调用逻辑回归算法函数
import numpy as np
import matplotlib.pyplot as plt
np.random.seed=666
x=np.random.normal(0,1,size=(200,2))
y=np.array(x[:,0]**2+x[:,1]<1.5,dtype="int")
for _ in range(20):
y[np.random.randint(200)]=1
plt.figure()
plt.scatter(x[y==0,0],x[y==0,1],color="r")
plt.scatter(x[y==1,0],x[y==1,1],color="g")
plt.show()
#1-1单纯的逻辑回归算法
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=666)
from sklearn.linear_model import LogisticRegression
log=LogisticRegression()
log.fit(x_train,y_train)
print(log.score(x_test,y_test))
knn3=KNeighborsClassifier()
knn3.fit(x_train,y_train)
print(knn3.score(x_test,y_test))
#1-2sklearn中的逻辑回归(多项式参与,并不带正则化)
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
def polynomiallogisticregression(degree):
return Pipeline([
("poly",PolynomialFeatures(degree=degree)),
("std_reg",StandardScaler()),
("log_reg",LogisticRegression())
])
x=np.random.normal(0,1,size=(200,2))
y=np.array(x[:,0]**2+x[:,1]<1.5,dtype="int")
for _ in range(20):
y[np.random.randint(200)]=1
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=666)
p1=polynomiallogisticregression(degree=2)
p1.fit(x_train,y_train)
print(p1.score(x_train,y_train))
print(p1.score(x_test,y_test))
plot_decision_boundary(p1,axis=[-4,4,-4,4])
plt.scatter(x[y==0,0],x[y==0,1],color="r")
plt.scatter(x[y==1,0],x[y==1,1],color="g")
plt.show()
p1=polynomiallogisticregression(degree=20) #当其次数变为高次时,其训练模型已经过拟合
p1.fit(x_train,y_train)
print(p1.score(x_train,y_train))
print(p1.score(x_test,y_test))
plot_decision_boundary(p1,axis=[-4,4,-4,4])
plt.scatter(x[y==0,0],x[y==0,1],color="r")
plt.scatter(x[y==1,0],x[y==1,1],color="g")
plt.show()
#1-3逻辑回归的正则化形式函数
def Polynomiallogisticregression(degree,C,penalty): #逻辑回归的三大超参数
return Pipeline([
("poly",PolynomialFeatures(degree=degree)),
("std_reg",StandardScaler()),
("log_reg",LogisticRegression(C=C,penalty=penalty))
])
p1=Polynomiallogisticregression(degree=20,C=1,penalty="l2") #当其次数变为高次时,其训练模型已经过拟合
p1.fit(x_train,y_train)
print(p1.score(x_train,y_train))
print(p1.score(x_test,y_test))
plot_decision_boundary(p1,axis=[-4,4,-4,4])
plt.scatter(x[y==0,0],x[y==0,1],color="r")
plt.scatter(x[y==1,0],x[y==1,1],color="g")
plt.show() 其输出结果对比如下所示:

注:左为拟合度比较好的决策边界,右边为高次的过拟合训练模型
sklearn调用逻辑回归算法的更多相关文章
- Sklearn实现逻辑回归
方法与参数 LogisticRegression类的各项参数的含义 class sklearn.linear_model.LogisticRegression(penalty='l2', dual=F ...
- SparkMLlib学习分类算法之逻辑回归算法
SparkMLlib学习分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/51693 ...
- SparkMLlib分类算法之逻辑回归算法
SparkMLlib分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/5169383 ...
- 逻辑回归算法的原理及实现(LR)
Logistic回归虽然名字叫"回归" ,但却是一种分类学习方法.使用场景大概有两个:第一用来预测,第二寻找因变量的影响因素.逻辑回归(Logistic Regression, L ...
- Spark机器学习(2):逻辑回归算法
逻辑回归本质上也是一种线性回归,和普通线性回归不同的是,普通线性回归特征到结果输出的是连续值,而逻辑回归增加了一个函数g(z),能够把连续值映射到0或者1. MLLib的逻辑回归类有两个:Logist ...
- 《BI那点儿事》Microsoft 逻辑回归算法——预测股票的涨跌
数据准备:一组股票历史成交数据(股票代码:601106 中国一重),起止日期:2011-01-04至今,其中变量有“开盘”.“最高”.“最低”.“收盘”.“总手”.“金额”.“涨跌”等 UPDATE ...
- sklearn 调用逻辑回归函数训练数据时出现 “unknown label type:unknown”
problemsolution:
- sklearn中调用集成学习算法
1.集成学习是指对于同一个基础数据集使用不同的机器学习算法进行训练,最后结合不同的算法给出的意见进行决策,这个方法兼顾了许多算法的"意见",比较全面,因此在机器学习领域也使用地非常 ...
- sklearn实现多分类逻辑回归
sklearn实现多分类逻辑回归 #二分类逻辑回归算法改造适用于多分类问题1.对于逻辑回归算法主要是用回归的算法解决分类的问题,它只能解决二分类的问题,不过经过一定的改造便可以进行多分类问题,主要的改 ...
随机推荐
- 【原】linux两台服务器之间免密登录方法
搭建集群机器192.168.0.100和192.168.0.200里,需要两台机器中间相互拷贝文件: 方式一:下载192.168.0.100机器文件到本地,再将本地文件拷贝到B机器 方式二:192.1 ...
- Java面向对象编程 -2
成员属性封装 在类之中的组成就是属性和方法,一般而言方法都是对外提供服务的,所以是不会进行封装处理的,而对于属性需要较高的安全性,所以往往需要对其进行保护 这个时候就需要采用封装性对属性进行保护. 在 ...
- 【SSM - druid 】配置与使用
web.xml 配置 <!-- druid的监控页面配置开始 --> <servlet> <servlet-name>StatViewServlet</ser ...
- case语句!
1.case 语句概述(1)case 语句的作用使用 case 语句改写 if 多分支可以使脚本结构更加清晰.层次分明.针对变量的不同取值,执行不同的命令序列.2.case 语句的结构:case 变量 ...
- python3 getopt用法
python channel_builder.py -s /Users/graypn/ -d /Users/graypn/Documents -m 7 --out=report/xx.html 参数也 ...
- MyBatis 入门Demo
新建数据库my_db,新建表student_tb id为主键,不自动递增. 不必插入数据. 下载MyBatis https://github.com/mybatis/mybatis-3/release ...
- Linux - 监控工具Conky
主题Harmattan,https://www.jianshu.com/p/5c8d4a1f4c91,这个主题在deepin linux下有黑框背景,因为是伪透明,所以选择黑色背景的主题即可
- 如果你是新晋的leader, 你可能需要了解这些。
背景 在职业发展的道路上,我们总会面临这样的抉择: 是在技术的路上一条路走到黑,做技术专家 接触管理, 走上管理 年龄大了,搬砖没人要,转型 or 去公司楼下卖炒粉 我曾经有个小小的愿望: 在毕业5年 ...
- sqllab less-1
1.访问sqllab 的less-1 按提示加入http://10.9.2.81/Less-1/?id=1 2. 后面加入单引号,发生报错http://10.9.2.81/Less-1/?id=1‘ ...
- 10 JavaScript对象&类&for循环
JavaScript对象 JavaScript中所有事物都是对象:字符串.数值.数组.函数.数学和正则表达式 JavaScript有些类型可以是字面量而非对象:如字符串.数值.布尔值 JavaScri ...