sklearn调用逻辑回归算法
1、逻辑回归算法即可以看做是回归算法,也可以看作是分类算法,通常用来解决分类问题,主要是二分类问题,对于多分类问题并不适合,也可以通过一定的技巧变形来间接解决。
2、决策边界是指不同分类结果之间的边界线(或者边界实体),它具体的表现形式一定程度上说明了算法训练模型的过拟合程度,我们可以通过决策边界来调整算法的超参数。
注解:左边逻辑回归拟合决策边界嘈杂冗余说明过拟合,右边决策边界分层清晰说明拟合度好
3、在逻辑回归中随着算法的复杂度不断地提高,其算法的过拟合也会越来越严重,为了避免这个现象,我们在逻辑回归中也需要进行正则化,以减小整体拟合的均方差,减少训练的过拟合现象。因此sklearn中调用逻辑回归时含有三个重要的超参数degree(多项式的最高次数),C(正则化系数)以及penalty(正则化的方式l1/l2)
4、sklearn中逻辑回归使用的正则化方式如下:
import numpy as np
import matplotlib.pyplot as plt
#定义概率转换函数sigmoid函数
def sigmoid(t):
return 1/(1+np.exp(-t))
x=np.linspace(-10,10,100)
y=sigmoid(x)
plt.figure()
plt.plot(x,y,"r",label="Sigmoid")
plt.legend(loc=2)
plt.show()
from sklearn import datasets
d=datasets.load_iris()
x=d.data
y=d.target
x=x[y<2,:2]
y=y[y<2]
#定义机器学习算法的决策边界输出函数
def plot_decision_boundary(model,axis):
x0,x1=np.meshgrid(
np.linspace(axis[0],axis[1],int((axis[1]-axis[0])*100)).reshape(-1,1),
np.linspace(axis[2],axis[3], int((axis[3] - axis[2]) * 100)).reshape(-1,1)
)
x_new=np.c_[x0.ravel(),x1.ravel()]
y_pre=model.predict(x_new)
zz=y_pre.reshape(x0.shape)
from matplotlib.colors import ListedColormap
cus=ListedColormap(["#EF9A9A","#FFF59D","#90CAF9"])
plt.contourf(x0,x1,zz,cmap=cus)
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=666)
from sklearn.neighbors import KNeighborsClassifier
knn1=KNeighborsClassifier()
knn1.fit(x_train,y_train)
plot_decision_boundary(knn1,axis=[4,8,1,5])
plt.scatter(x[y==0,0],x[y==0,1],color="r")
plt.scatter(x[y==1,0],x[y==1,1],color="g")
plt.show()
knn2=KNeighborsClassifier(n_neighbors=50) #k越大,模型越简单,也意味着过拟合的程度越轻,决策边界越清晰
knn2.fit(d.data[:,:2],d.target)
x=d.data
y=d.target
plot_decision_boundary(knn2,axis=[4,8,1,5])
plt.scatter(x[y==0,0],x[y==0,1],color="r")
plt.scatter(x[y==1,0],x[y==1,1],color="g")
plt.scatter(x[y==2,0],x[y==2,1],color="b")
plt.show() #逻辑回归添加多项式回归
import numpy as np
import matplotlib.pyplot as plt
np.random.seed=666
x=np.random.normal(0,1,size=(100,2))
y=np.array(x[:,0]**2+x[:,1]**2<1.5,dtype="int")
knn2=KNeighborsClassifier()
knn2.fit(x,y)
plot_decision_boundary(knn2,axis=[-4,4,-3,3])
plt.scatter(x[y==0,0],x[y==0,1],color="r")
plt.scatter(x[y==1,0],x[y==1,1],color="g")
plt.show() ### sklearn中调用逻辑回归算法函数
import numpy as np
import matplotlib.pyplot as plt
np.random.seed=666
x=np.random.normal(0,1,size=(200,2))
y=np.array(x[:,0]**2+x[:,1]<1.5,dtype="int")
for _ in range(20):
y[np.random.randint(200)]=1
plt.figure()
plt.scatter(x[y==0,0],x[y==0,1],color="r")
plt.scatter(x[y==1,0],x[y==1,1],color="g")
plt.show()
#1-1单纯的逻辑回归算法
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=666)
from sklearn.linear_model import LogisticRegression
log=LogisticRegression()
log.fit(x_train,y_train)
print(log.score(x_test,y_test))
knn3=KNeighborsClassifier()
knn3.fit(x_train,y_train)
print(knn3.score(x_test,y_test))
#1-2sklearn中的逻辑回归(多项式参与,并不带正则化)
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
def polynomiallogisticregression(degree):
return Pipeline([
("poly",PolynomialFeatures(degree=degree)),
("std_reg",StandardScaler()),
("log_reg",LogisticRegression())
])
x=np.random.normal(0,1,size=(200,2))
y=np.array(x[:,0]**2+x[:,1]<1.5,dtype="int")
for _ in range(20):
y[np.random.randint(200)]=1
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=666)
p1=polynomiallogisticregression(degree=2)
p1.fit(x_train,y_train)
print(p1.score(x_train,y_train))
print(p1.score(x_test,y_test))
plot_decision_boundary(p1,axis=[-4,4,-4,4])
plt.scatter(x[y==0,0],x[y==0,1],color="r")
plt.scatter(x[y==1,0],x[y==1,1],color="g")
plt.show()
p1=polynomiallogisticregression(degree=20) #当其次数变为高次时,其训练模型已经过拟合
p1.fit(x_train,y_train)
print(p1.score(x_train,y_train))
print(p1.score(x_test,y_test))
plot_decision_boundary(p1,axis=[-4,4,-4,4])
plt.scatter(x[y==0,0],x[y==0,1],color="r")
plt.scatter(x[y==1,0],x[y==1,1],color="g")
plt.show()
#1-3逻辑回归的正则化形式函数
def Polynomiallogisticregression(degree,C,penalty): #逻辑回归的三大超参数
return Pipeline([
("poly",PolynomialFeatures(degree=degree)),
("std_reg",StandardScaler()),
("log_reg",LogisticRegression(C=C,penalty=penalty))
])
p1=Polynomiallogisticregression(degree=20,C=1,penalty="l2") #当其次数变为高次时,其训练模型已经过拟合
p1.fit(x_train,y_train)
print(p1.score(x_train,y_train))
print(p1.score(x_test,y_test))
plot_decision_boundary(p1,axis=[-4,4,-4,4])
plt.scatter(x[y==0,0],x[y==0,1],color="r")
plt.scatter(x[y==1,0],x[y==1,1],color="g")
plt.show() 其输出结果对比如下所示:
注:左为拟合度比较好的决策边界,右边为高次的过拟合训练模型
sklearn调用逻辑回归算法的更多相关文章
- Sklearn实现逻辑回归
方法与参数 LogisticRegression类的各项参数的含义 class sklearn.linear_model.LogisticRegression(penalty='l2', dual=F ...
- SparkMLlib学习分类算法之逻辑回归算法
SparkMLlib学习分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/51693 ...
- SparkMLlib分类算法之逻辑回归算法
SparkMLlib分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/5169383 ...
- 逻辑回归算法的原理及实现(LR)
Logistic回归虽然名字叫"回归" ,但却是一种分类学习方法.使用场景大概有两个:第一用来预测,第二寻找因变量的影响因素.逻辑回归(Logistic Regression, L ...
- Spark机器学习(2):逻辑回归算法
逻辑回归本质上也是一种线性回归,和普通线性回归不同的是,普通线性回归特征到结果输出的是连续值,而逻辑回归增加了一个函数g(z),能够把连续值映射到0或者1. MLLib的逻辑回归类有两个:Logist ...
- 《BI那点儿事》Microsoft 逻辑回归算法——预测股票的涨跌
数据准备:一组股票历史成交数据(股票代码:601106 中国一重),起止日期:2011-01-04至今,其中变量有“开盘”.“最高”.“最低”.“收盘”.“总手”.“金额”.“涨跌”等 UPDATE ...
- sklearn 调用逻辑回归函数训练数据时出现 “unknown label type:unknown”
problemsolution:
- sklearn中调用集成学习算法
1.集成学习是指对于同一个基础数据集使用不同的机器学习算法进行训练,最后结合不同的算法给出的意见进行决策,这个方法兼顾了许多算法的"意见",比较全面,因此在机器学习领域也使用地非常 ...
- sklearn实现多分类逻辑回归
sklearn实现多分类逻辑回归 #二分类逻辑回归算法改造适用于多分类问题1.对于逻辑回归算法主要是用回归的算法解决分类的问题,它只能解决二分类的问题,不过经过一定的改造便可以进行多分类问题,主要的改 ...
随机推荐
- 常用SQL语句大全
一些常用SQL语句大全 一.基础1.说明:创建数据库CREATE DATABASE database-name2.说明:删除数据库drop database dbname3.说明:备份sql se ...
- [01]Binary Search二分查找
Binary Search二分查找 作用:二分查找适用于有序的的数组或列表中,如果列表及数组中有n个元素,通过二分查找查询某一元素的位置需要的步骤是log2(n)(注:该log的底数是2) 1.Pyt ...
- 学习笔记(20)- Google LaserTagger
参考文章:推断速度达seq2seq模型的100倍,谷歌开源文本生成新方法LaserTagger 论文地址:https://research.google/pubs/pub48542/ 开源地址:htt ...
- 谈一谈并查集QAQ(上)
最近几日理了理学过的很多oi知识...发现不知不觉就有很多的知识忘记了... 在聊聊并查集的时候顺便当作巩固吧.... 什么是并查集呢? ( Union Find Set ) 是一种用于处理分离集合的 ...
- mysql update 修改多个字段and的语法问题
在MySQL里面update一条记录,语法都正确的,但记录并没有被更新... 问题语句 执行之前的记录是这样的: 执行之后的记录是这样的: 可以看到,实际上是有效果的: why? 看起来,语法是完全没 ...
- LinkStack(链栈)
链栈即链式栈,也就是说我们不用再考虑空间的大小,可随心所欲的进行数据的插入/删除了.和顺序栈一样,仍然要保持其stack的特性,只在一端进行插入和删除,后进先出. (2018-02-14 代码更新) ...
- 蓝桥杯 K好数
如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数.求L位K进制数中K好数的数目.例如K = 4,L = 2的时候,所有K好数为11.13.20.22.30.3 ...
- Spring学习(五)
自动装备 1.定义 自动装配(autowiring): 将某个Bean实例中所引用的其它的Bean自动注入到当前Bean实例中 自动装配就是指由Spring来自动地注入依赖对象,无需人工参与. 自动装 ...
- 碰到的问题——建设基于TensorFlow的深度学习环境
1.解决jupyter notebook问题:socket.error: [Errno 99] Cannot assign requested address 首先要生成一个jupyter的配置文件: ...
- 利用java反射调用类的的私有方法--转
原文:http://blog.csdn.net/woshinia/article/details/11766567 1,今天和一位朋友谈到父类私有方法的调用问题,本来以为利用反射很轻松就可以实现,因为 ...