传送门

Luogu

解题思路

区间开方以及区间求和。

考虑用线段树来做。

开方操作看似没有任何结合律可言,但这题有另外一个性质:

一个数的初始值不超过 \(10^{18}\) ,而这个数被开方6次左右就可以到1或0,并且1和0都是不需要再开方的。

所以我们记一下每个节点代表区间的最大值,若该值小于等于1,那么就不需要再进入下一层递归,否则就向下递归修改,修改次数最坏也不过是 \(O(6n)\) 左右,线段树完全没压力,于是这题就做完了。

细节注意事项

  • 咕咕咕

参考代码

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cctype>
#include <cmath>
#include <ctime>
#define rg register
using namespace std;
template < typename T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while (!isdigit(c)) f |= (c == '-'), c = getchar();
while (isdigit(c)) s = s * 10 + (c ^ 48), c = getchar();
s = f ? -s : s;
} typedef long long LL;
const int _ = 100010; int n; LL a[_], sum[_ << 2], mx[_ << 2]; inline int lc(int rt) { return rt << 1; } inline int rc(int rt) { return rt << 1 | 1; } inline void pushup(int rt) {
sum[rt] = sum[lc(rt)] + sum[rc(rt)];
mx[rt] = max(mx[lc(rt)], mx[rc(rt)]);
} inline void build(int rt = 1, int l = 1, int r = n) {
if (l == r) { mx[rt] = sum[rt] = a[l]; return; }
int mid = (l + r) >> 1;
build(lc(rt), l, mid), build(rc(rt), mid + 1, r), pushup(rt);
} inline void update(int ql, int qr, int rt = 1, int l = 1, int r = n) {
if (mx[rt] <= 1) return;
if (l == r) { mx[rt] = sum[rt] = sqrt(sum[rt]); return; }
int mid = (l + r) >> 1;
if (ql <= mid) update(ql, qr, lc(rt), l, mid);
if (qr > mid) update(ql, qr, rc(rt), mid + 1, r);
pushup(rt);
} inline LL query(int ql, int qr, int rt = 1, int l = 1, int r = n) {
if (ql <= l && r <= qr) return sum[rt];
int mid = (l + r) >> 1; LL res = 0;
if (ql <= mid) res += query(ql, qr, lc(rt), l, mid);
if (qr > mid) res += query(ql, qr, rc(rt), mid + 1, r);
return res;
} int main() {
#ifndef ONLINE_JUDGE
freopen("in.in", "r", stdin);
#endif
int Case = 0;
while (scanf("%d", &n) != EOF) {
printf("Case #%d:\n", ++Case);
for (rg int i = 1; i <= n; ++i) read(a[i]);
build();
int q; read(q);
for (rg int f, ql, qr; q--; ) {
read(f), read(ql), read(qr);
if (ql > qr) swap(ql, qr);
if (!f) update(ql, qr);
else printf("%lld\n", query(ql, qr));
}
puts("");
}
return 0;
}

完结撒花 \(qwq\)

「SP2713」GSS4 - Can you answer these queries IV的更多相关文章

  1. 题解【SP2713】GSS4 - Can you answer these queries IV

    题目描述 You are given a sequence \(A\) of \(N(N \leq 100,000)\) positive integers. There sum will be le ...

  2. 题解 SP2713 【GSS4 - Can you answer these queries IV】

    用计算器算一算,就可以发现\(10^{18}\)的数,被开方\(6\)次后就变为了\(1\). 所以我们可以直接暴力的进行区间修改,若这个数已经到达\(1\),则以后就不再修改(因为\(1\)开方后还 ...

  3. 线段树 SP2713 GSS4 - Can you answer these queries IV暨 【洛谷P4145】 上帝造题的七分钟2 / 花神游历各国

    SP2713 GSS4 - Can you answer these queries IV 「题意」: n 个数,每个数在\(10^{18}\) 范围内. 现在有「两种」操作 0 x y把区间\([x ...

  4. SP2713 GSS4 - Can you answer these queries IV(线段树)

    传送门 解题思路 大概就是一个数很少次数的开方会开到\(1\),而\(1\)开方还是\(1\),所以维护一个和,维护一个开方标记,维护一个区间是否全部为\(1/0\)的标记.然后每次修改时先看是否有全 ...

  5. GSS4 - Can you answer these queries IV || luogu4145上帝造题的七分钟2 / 花神游历各国 (线段树)

    GSS4 - Can you answer these queries IV || luogu4145上帝造题的七分钟2 / 花神游历各国 GSS4 - Can you answer these qu ...

  6. GSS4 - Can you answer these queries IV(线段树懒操作)

    GSS4 - Can you answer these queries IV(线段树懒操作) 标签: 线段树 题目链接 Description recursion有一个正整数序列a[n].现在recu ...

  7. 【SP2713 GSS4 - Can you answer these queries IV】 题解

    题目链接:https://www.luogu.org/problemnew/show/SP2713 真暴力啊. 开方你开就是了,开上6次就都没了. #include <cmath> #in ...

  8. SP2713 GSS4 - Can you answer these queries IV

    题目大意 \(n\) 个数,和在\(10^{18}\)范围内. 也就是\(\sum~a_i~\leq~10^{18}\) 现在有两种操作 0 x y 把区间[x,y]内的每个数开方,下取整 1 x y ...

  9. SP2713 GSS4 - Can you answer these queries IV 分块

    问题描述 LG-SP2713 题解 分块,区间开根. 如果一块的最大值是 \(1\) ,那么这个块就不用开根了. 如果最大值不是 \(1\) ,直接暴力开就好了. \(\mathrm{Code}\) ...

随机推荐

  1. POJ1797 Heavy Transportation (堆优化的Dijkstra变形)

    Background Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand bus ...

  2. JAVA 开学测试

    package StudentScore; public class ScoreInformation { String stunumber; //学号 String name; //姓名 doubl ...

  3. 02-12Android学习进度报告十二

    今天学习了ListView的焦点问题,基本了解了ListView的使用内容. 首先可以为抢占了控件的组件设置:android:focusable="false" 只需为抢占了Lis ...

  4. thymeleaf模板引擎简介

    一:thymeleaf 学习笔记---http://www.blogjava.net/bjwulin/articles/395185.html thymeleaf是一个支持html原型的自然引擎,它在 ...

  5. LoRa基础知识

    摘自:LoRaWAN介绍 - LoRa从业者读这篇就够了 https://blog.csdn.net/iotisan/article/details/69939241    LoRa网络结构      ...

  6. Hibernate面试题(七)--load与get区别

    1. load方式是延迟加载,只有属性被访问的时候才会调用sql语句 get方式是非延迟加载,无论后面的代码是否会访问到属性,马上执行sql语句 2. 都通过id=500去获取对象1. get方式会返 ...

  7. 「JSOI2014」支线剧情2

    「JSOI2014」支线剧情2 传送门 不难发现原图是一个以 \(1\) 为根的有根树,所以我们考虑树形 \(\text{DP}\). 设 \(f_i\) 表示暴力地走完以 \(i\) 为根的子树的最 ...

  8. Java入门笔记 00-前言&目录

    前言:这本笔记记录的是Java基础部分的学习内容,大部分内容总结性的,包括: ---01 Java基础语法 ---02 数组 ---03 面向对象 ---04 异常处理 ---05 多线程 ---06 ...

  9. nginx 的请求处理阶段

    nginx处理的11个阶段 nginx处理用户请求的流程 接收用户请求头部之后 1 .匹配对应得location 2.是否进行限速 3.验证用户是否有权限访问该资源:和判断是否是盗链的请求 4.生成用 ...

  10. linux 服务器优化 --TIME_WAIT 问题

    linux 服务器优化 --TIME_WAIT 问题: 问题现象: 1.外部机器不能正常连接SSH 2.内向外不能够正常的ping通过,域名也不能正常解析. 通过一些命令,查看服务器TIME_WAIT ...