There are an equation.

∑0≤k1,k2,⋯km≤n∏1⩽j<m(kj+1kj)%1000000007=?

We define that (kj+1kj)=kj+1!kj!(kj+1−kj)! . And (kj+1kj)=0 while kj+1<kj.

You have to get the answer for each n and m that given to you.

For example,if n=1,m=3,

When k1=0,k2=0,k3=0,(k2k1)(k3k2)=1;

Whenk1=0,k2=1,k3=0,(k2k1)(k3k2)=0;

Whenk1=1,k2=0,k3=0,(k2k1)(k3k2)=0;

Whenk1=1,k2=1,k3=0,(k2k1)(k3k2)=0;

Whenk1=0,k2=0,k3=1,(k2k1)(k3k2)=1;

Whenk1=0,k2=1,k3=1,(k2k1)(k3k2)=1;

Whenk1=1,k2=0,k3=1,(k2k1)(k3k2)=0;

Whenk1=1,k2=1,k3=1,(k2k1)(k3k2)=1.

So the answer is 4.

Input

The first line of the input contains the only integer T,(1≤T≤10000)

Then T lines follow,the i-th line contains two integers n,m,(0≤n≤109,2≤m≤109)

Output

For each n and m,output the answer in a single line.

Sample Input

2

1 2

2 3

Sample Output

3

13

打表很容易看出规律是m0+m1+...+mnm^0+m^1+...+m^nm0+m1+...+mn(鬼扯,我看了好几个小时愣是没看出有什么规律,看完题解还是不知道怎么推出来的,我太难了,这公式推的我服气)

下面是题解,我服我服了,卧槽。

推导公式结束后,你看直接一个逆元完事了,这个题我哭了,比我看到莫比乌斯反演还绝望,卧槽。

#include <bits/stdc++.h>
using namespace std;
const int mod = 1e9 + 7; long long ksm(long long a, long long n)
{
long long ans = 1;
for (; n; n >>= 1)
{
if (n & 1)
ans = ans * a % mod;
a = a * a % mod;
}
return ans;
}
int main()
{
int T;
scanf("%d", &T);
while (T--)
{
long long n, m;
scanf("%lld%lld", &n, &m);
printf("%lld\n", (ksm(m, n + 1) - 1) * ksm(m - 1, mod - 2) % mod);
}
return 0;
}

数学--数论--Hdu 5793 A Boring Question (打表+逆元)的更多相关文章

  1. HDU 5793 - A Boring Question

    HDU 5793 - A Boring Question题意: 计算 ( ∑(0≤K1,K2...Km≤n )∏(1≤j<m) C[Kj, Kj+1]  ) % 1000000007=? (C[ ...

  2. HDU 5793 A Boring Question (找规律 : 快速幂+逆元)

    A Boring Question 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5793 Description Input The first l ...

  3. HDU 5793 A Boring Question (逆元+快速幂+费马小定理) ---2016杭电多校联合第六场

    A Boring Question Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  4. HDU 5793 A Boring Question (找规律 : 快速幂+乘法逆元)

    A Boring Question Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  5. hdu 5793 A Boring Question(2016第六场多校)

    A Boring Question Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  6. HDU 5793 A Boring Question ——(找规律,快速幂 + 求逆元)

    参考博客:http://www.cnblogs.com/Sunshine-tcf/p/5737627.html. 说实话,官方博客的推导公式看不懂...只能按照别人一样打表找规律了...但是打表以后其 ...

  7. HDU 5793 A Boring Question 多校训练

    There are an equation. ∑0≤k1,k2,⋯km≤n∏1⩽j<m(kj+1kj)%1000000007=?∑0≤k1,k2,⋯km≤n∏1⩽j<m(kj+1kj)%1 ...

  8. 数学--数论--HDU 2582 F(N) 暴力打表找规律

    This time I need you to calculate the f(n) . (3<=n<=1000000) f(n)= Gcd(3)+Gcd(4)+-+Gcd(i)+-+Gc ...

  9. hdu_5793_A Boring Question(打表找规律)

    题目链接:hdu_5793_A Boring Question 题意: 自己看吧,说不清楚了. 题解: 打表找规律 #include<cstdio> typedef long long l ...

随机推荐

  1. java文件中字母出现的次数和百分比

    主要是文件的读写.先在代码中导入文件.一行一行的进行数据的读入,通过“  ”空格对读入的信息进行分割,存入到数组里之后对于每一个单词的每一个字母进行区分存入相应的字母数组里.最后统计总的字母个数.应用 ...

  2. MTK Android Driver :Lcm

    MTK Android Driver :lcm 1.怎样新建一个LCD驱动 LCD模组主要包括LCD显示屏和驱动IC.比如LF040DNYB16a模组的驱动IC型号为NT35510.要在MTK6577 ...

  3. Tomcat目录解析

    bin 可执行文件的储存 conf 配置文件 lib 依赖jar包 logs 日志文件 temp 临时文件 webapps 创建的web应用程序 work 存放运行时数据 如何启动Tomcat? 启动 ...

  4. Fiddler 内置命令与断点

    Fiddler还有一个藏的很深的命令框,就是眼前,我用了几年的Fiddler都没有发现它,偶尔在别人的文章发现还有这个小功能,还蛮好用的,整理下记录在这里. FIddler断点功能就是将请求截获下来, ...

  5. How Many Answers Are Wrong HDU - 3038 (经典带权并查集)

    题目大意:有一个区间,长度为n,然后跟着m个子区间,每个字区间的格式为x,y,z表示[x,y]的和为z.如果当前区间和与前面的区间和发生冲突,当前区间和会被判错,问:有多少个区间和会被判错. 题解:x ...

  6. I - Harmonic Number LightOJ - 1234 (分段打表+暴力)

    题目给的时间限制是3s,所以可以直接暴力来做,注意n的取值范围是1e8,如果开一个1e8的数组会RE.分段打表,可以每100个数记录一次,然后对每次询问先找到它所在的区间,然后在暴力往后找.(学到了~ ...

  7. python与excel的关系;铁打的python流水的excel

    现在很多行业,都离不开用Excel: 做财务的,要用Excel做报表:做物流的,会用Excel来跟踪订单情况:做HR的,会用Excel算工资:做分析的,会用Excel计算数据做报表.不知道你有没有这样 ...

  8. PHP函数:json_last_error

    json_last_error()  - 返回 JSON 编码解码时最后发生的错误.. 说明: json_last_error ( void ) : int 参数: 无 返回值: 返回一个整型(int ...

  9. 详解 final 和 static

    在我们上一篇博文中提到了 fianl 这个关键字,对于这个关键字,本人在初学时也耗费了极大地心血,甚至和师兄进行了激烈的讨论,并且,在我们讨论.尝试 以及 翻阅各种资料,最终得出了合适.易懂的解释. ...

  10. secureCRT常用操作

    直接在网上搜索下载 连接 选择协议 Telnet Telnet连接时,进入输入密码 串口 连接串口后,查看本机连接的串口号 新建的时候,选择相同的串口号 RTS需要勾选掉 外观字体 选项 => ...