参考链接:https://github.com/argman/EAST (项目来源)

https://github.com/opencv/opencv/issues/12491  (遇到的问题)

      https://www.pyimagesearch.com/2018/08/20/opencv-text-detection-east-text-detector/   (opencv加载)

文字检测有很多比较好的现成的模型比如yolov3,pesnet,pennet,east。不一一赘述,讲一下自己跑通east的过程。

https://github.com/argman/EAST链接中下载项目,windows下,各种包的版本要正确否则会出一些乱七八糟的错误。

运行EAST/eval.py。没有什么特别的问题要说,我在cpu下单张640*480的图能够达到每张0.4秒左右,还是非常优秀的。中英文数字都可。

但是源代码是ckpt,非常大,转成pb会稍微小点。添加:

##生成pb模型,但需要修改model.py
output_graph_def = tf.graph_util.convert_variables_to_constants(self.sess, # The session is used to retrieve the weights
tf.get_default_graph().as_graph_def(), # The graph_def is used to retrieve the nodes
["feature_fusion/Conv_7/Sigmoid", "feature_fusion/concat_3"]
)
output_graph='D:\\work\\video\\hand_tracking_no_op\\hand_tracking\\EAST\\east_icdar2015_resnet_v1_50_rbox\\out.pb'
with tf.gfile.GFile(output_graph, "wb") as f:
f.write(output_graph_def.SerializeToString())
print("%d ops in the final graph." % len(output_graph_def.node)) 位置在eval.py中的 saver.restore(self.sess, model_path)后面。注意如果你想要opencv加载pb还要修改model.py中的内容,这个在后面一篇文章中会讲到。
生成后用tf加载,方法跟加载ckpt相似:
import os
os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu_list try:
os.makedirs(FLAGS.output_dir)
except OSError as e:
if e.errno != 17:
raise print("load_graph")
graph = load_graph(FLAGS.checkpoint_path) input_images = graph.get_tensor_by_name(
'import/input_images:0') f_score = graph.get_tensor_by_name('import/feature_fusion/Conv_7/Sigmoid:0')
f_geometry = graph.get_tensor_by_name(
'import/feature_fusion/concat_3:0') with tf.Session(graph=graph) as sess: im_fn_list = get_images()
for im_fn in im_fn_list:
im = cv2.imread(im_fn)[:, :, ::-1]
start_time = time.time()
im_resized, (ratio_h, ratio_w) = resize_image(im) timer = {'net': 0, 'restore': 0, 'nms': 0}
start = time.time() #file_writer = tf.summary.FileWriter('tmp/log', sess.graph) score, geometry = sess.run([f_score, f_geometry], feed_dict={
input_images: [im_resized]})
timer['net'] = time.time() - start boxes, timer = detect(score_map=score, geo_map=geometry, timer=timer)
print('{} : net {:.0f}ms, restore {:.0f}ms, nms {:.0f}ms'.format(
im_fn, timer['net']*1000, timer['restore']*1000, timer['nms']*1000)) if boxes is not None:
boxes = boxes[:, :8].reshape((-1, 4, 2))
boxes[:, :, 0] /= ratio_w
boxes[:, :, 1] /= ratio_h duration = time.time() - start_time
print('[timing] {}'.format(duration)) # save to file
if boxes is not None:
res_file = os.path.join(
FLAGS.output_dir,
'{}.txt'.format(
os.path.basename(im_fn).split('.')[0])) with open(res_file, 'w') as f:
for box in boxes:
# to avoid submitting errors
box = sort_poly(box.astype(np.int32))
if np.linalg.norm(box[0] - box[1]) < 5 or np.linalg.norm(box[3]-box[0]) < 5:
continue
f.write('{},{},{},{},{},{},{},{}\r\n'.format(
box[0, 0], box[0, 1], box[1, 0], box[1, 1], box[2, 0], box[2, 1], box[3, 0], box[3, 1],
))
cv2.polylines(im[:, :, ::-1], [box.astype(np.int32).reshape((-1, 1, 2))], True, color=(255, 255, 0), thickness=1)
if not FLAGS.no_write_images:
img_path = os.path.join(FLAGS.output_dir, os.path.basename(im_fn))
cv2.imwrite(img_path, im[:, :, ::-1]) 以上就是EAST的ckpt转pb用tf加载啦。
下一篇讲opencv加载east的pb。

文字检测模型EAST应用详解 ckpt pb的tf加载,opencv加载的更多相关文章

  1. Kaggle网站流量预测任务第一名解决方案:从模型到代码详解时序预测

    Kaggle网站流量预测任务第一名解决方案:从模型到代码详解时序预测 2017年12月13日 17:39:11 机器之心V 阅读数:5931   近日,Artur Suilin 等人发布了 Kaggl ...

  2. Java内存模型相关原则详解

    在<Java内存模型(JMM)详解>一文中我们已经讲到了Java内存模型的基本结构以及相关操作和规则.而Java内存模型又是围绕着在并发过程中如何处理原子性.可见性以及有序性这三个特征来构 ...

  3. CSS3盒模型display:box详解

    display:box;box-flex是css3新添加的盒子模型属性,它的出现可以解决我们通过N多结构.css实现的布局方式.经典的一个布局应用就是布局的垂直等高.水平均分.按比例划分. 目前box ...

  4. 基于模型的特征选择详解 (Embedded & Wrapper)

    目录 基于模型的特征选择详解 (Embedded & Wrapper) 1. 线性模型和正则化(Embedded方式) 2. 基于树模型的特征选择(Embedded方式) 3. 顶层特征选择算 ...

  5. Kubernetes服务pod的健康检测liveness和readiness详解

    Kubernetes服务pod的健康检测liveness和readiness详解 接下来给大家讲解下在K8S上,我们如果对我们的业务服务进行健康检测. Health Check.restartPoli ...

  6. OSI模型各层详解

    1. OSI概述 1.1 模拟器说明 1.1.1 模拟器的作用 搭建实验环境进行测试. 1.1.2 模拟器的类型 PT:一般是学校中使用,命令不完整,且不能抓包 GNS3:思科(CCNA,CCNP), ...

  7. 不止面试02-JVM内存模型面试题详解

    第一部分:面试题 本篇文章我们将尝试回答以下问题: 描述一下jvm的内存结构 描述一下jvm的内存模型 谈一下你对常量池的理解 什么情况下会发生栈内存溢出?和内存溢出有什么不同? String str ...

  8. DJango模型Meta选项详解

    Django模型之Meta选项详解 MEAT选项 Django模型类的Meta是一个内部类,它用于定义一些Django模型类的行为特性.而可用的选项大致包含以下几类 abstract 这个属性是定义当 ...

  9. 第三十五节,目标检测之YOLO算法详解

    Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object de ...

随机推荐

  1. 打造Worktile敏捷开发管理工具的思与惑

    从2019年初,我们团队准备开发一款适合研发团队使用的敏捷开发管理工具,那时候我们也在思考,到底什么样的工具才算是优秀的研发管理工具,研发管理的场景.方法和流派有很多,市面上关于研发管理工具的产品也是 ...

  2. NSObject常用方法

    类 @interface NSObject <NSObject> { Class isa OBJC_ISA_AVAILABILITY; } // 初始化加载 + (void)load; / ...

  3. 使用Spring管理数据库事务

    在整个JavaWeb项目开发中,事务是用来开发可靠性网络应用程序的最关键部分.当应用程序与后端资源进行交互时,就会用到事务,这里的后端资源包括数据库.MQ.ERP等.而数据库事务是最常见的类型,而我们 ...

  4. Cows POJ - 2481 (树状数组 + 单点更新 + 区间查询)

    Cows 思路:我们可以按照每个范围的S从小到大排序,相同的S按E从大到小排序,这样的好处是当前范围的S一定大于等于之前范围的S(即当前的范围可能被之前范围的包围),那么我们只需要统计之前的范围E比当 ...

  5. Java并发基础05. 传统线程同步通信技术

    先看一个问题: 有两个线程,子线程先执行10次,然后主线程执行5次,然后再切换到子线程执行10,再主线程执行5次--如此往返执行50次. 看完这个问题,很明显要用到线程间的通信了, 先分析一下思路:首 ...

  6. Asp.Net.Core WebApi 版本控制

    前言 在后端Api的开发过程中,无法避免的会遇到接口迭代的过程,如何保证新老接口的共存和接口的向前的兼容呢,这时候就需要对Api进行版本的控制,那如何优雅的控制Api的版本呢? 开始 Microsof ...

  7. SWUST OJ 1075 求最小生成树(Prim算法)

    求最小生成树(Prim算法) 我对提示代码做了简要分析,提示代码大致写了以下几个内容 给了几个基础的工具,邻接表记录图的一个的结构体,记录Prim算法中最近的边的结构体,记录目标边的结构体(始末点,值 ...

  8. 【tensorflow2.0】张量的结构操作

    张量的操作主要包括张量的结构操作和张量的数学运算. 张量结构操作诸如:张量创建,索引切片,维度变换,合并分割. 张量数学运算主要有:标量运算,向量运算,矩阵运算.另外我们会介绍张量运算的广播机制. 本 ...

  9. radio 单选按钮 选中多个

    <input type="radio" name="a"/> <input type="radio" name=" ...

  10. 好玩Python——PIL项目实训

    PIL学习总结: 1. 2,PIL库概述: pil库可以完成图像归档和图像处理两方面功能的需求: 图像归档:对图像进行批处理,生成图像预览,图像转换格式等: 图像处理:图像基本处理,像素处理,颜色处理 ...