TensorFlow 多元线性回归【波士顿房价】
1数据读取
1.1数据集解读
1.2引入包
%matplotlib notebook import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.utils import shuffle1.2.1pandas介绍
1.2.2TensorFlow下安装pandas
1、激活tensorflow: Activate tensorflow
2、安装Pandas: conda install pandas1.2.3出现“No module named 'sklearn'”错误
原因:未安装sklearn模块
方法:
在anaconda 中安装: conda install scikit-learn1.3显示数据
# 读取数据文件 boston.csv文件位置自填
df = pd.read_csv("D:\学习资料\课程学习资料\深度学习\TensorFlow/boston.csv",header = 0) # 显示数据摘要描述信息
print(df.describe()
# 打印所有数据,只显示前30行和后三十行
print(df)
# 获取df的值
df = df.values
print(df)
# 将df转换成np的数组格式 ,内部存储格式不同,方便以后使用np的功能
df = np.array(df)
print(df)
# x_data为前12列的数据,实际上是0 - 11列;y_data为最后一列的数据,即12列
x_data = df[:,:12]
y_data = df[:,12]
print(x_data,"\nshape = ",x_data.shape)
print(y_data,"\nshape = ",y_data.shape)
2模型定义
2.1定义训练的占位符
#定义特征数据和标签数据的占位符
#shape中 None 表示行的数量未知,在实际训练时决定一次代入多少行样本,从一
#个样本的随机SDG到批量SDG都可以
x = tf.placeholder(tf.float32,[None,12],name = "X") #12个特征数据(12列)
y = tf.placeholder(tf.float32,[None,1],name = "Y") #1个标签数据(1列)2.2定义模型结构
定义模型函数
# 定义一个命名空间
with tf.name_scope("model"):
# w 初始化值为shape = (12,1)的随机数 stddev为标准差
w = tf.Variable(tf.random_normal([12,1],stddev = 0.01),name = "w")
# b 初始化值为 1.0
b = tf.Variable(1.0,name = "b")
#w和x是矩阵相乘,用matmul,不能用mutiply或*
def model(x,w,b):
return tf.matmul(x,w) + b #预测计算操作,前向计算节点
pred = model(x,w,b)3模型训练
3.1设置训练超参数
# 迭代轮次
train_epochs = 50 # 学习率
learning_rate = 0.013.2定义均方差损失函数
#定义均方差损失函数
with tf.name_scope("LossFunction"):
loss_function = tf.reduce_mean(tf.pow(y -pred,2))3.3选择优化器
# 创建优化器
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss_function)常用优化器包括:
tf.train.GradientDescentOptimizer
tf.train.AdadeltaOptimizer
tf.train.AdagradOptimizer
tf.train.AdagradDAOptimizer
tf.train.MomentumOptimizer
tf.train.AdamOptimizer
tf.train.FtrlOptimizer
tf.train.ProximalGradientDescentOptimizer
tf.train.ProximalAdagradOptimizer
tf.train.RMSPropOptimizer3.4声明会话
#声明回话
sess = tf.Session()
#定义初始化变量的操作
init = tf.global_variables_initializer()
#启动会话
sess.run(init)3.5迭代训练
#迭代训练
for epoch in range(train_epochs):
loss_sum = 0.0
for xs,ys in zip(x_data,y_data): #x_data得到的是一维数组,要变成二维数组;y_data得到的是一个常量,要变成二维数组
xs = xs.reshape(1,12)
ys = ys.reshape(1,1)
# Feed 数据必须和Placeholder 的shape 一致
_,loss = sess.run([optimizer,loss_function],feed_dict={x:xs,y:ys}) loss_sum = loss_sum + loss #打乱数据顺序
x_data,y_data = shuffle(x_data,y_data) b0temp = b.eval(session=sess)
w0temp = w.eval(session=sess)
loss_average = loss_sum / len(y_data) print("epoch=",epoch+1,"loss=",loss_average,"b=",b0temp,"w=",w0temp)
注:训练结果异常
3.6异常明示
3.6.1原因
3.6.2方法
4特征归一化版本
%matplotlib notebook import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.utils import shuffle # 读取数据文件
df = pd.read_csv("D:\学习资料\课程学习资料\深度学习\TensorFlow/boston.csv",header = 0) # 显示数据摘要描述信息
print(df.describe()) # 获取df的值
df = df.values
print(df) # 将df转换成np的数组格式 ,内部存储格式不同,方便以后使用np的功能
df = np.array(df)
print(df)特征归一化
# 对特征数据 【0到11】列 做 (0-1)归一化
for i in range(12):
df[:,i] = (df[:,i] - df[:,i].min()) / (df[:,i].max() - df[:,i].min()) #x_data 为归一化后的前12列特征数据 x_data = df[:,:12]
#y_data 为最后一列标签数据 y_data = df[:,12]#定义特征数据和标签数据的占位符
#shape中 None 表示行的数量未知,在实际训练时决定一次代入多少行样本,从一
#个样本的随机SDG到批量SDG都可以
x = tf.placeholder(tf.float32,[None,12],name = "X") #12个特征数据(12列)
y = tf.placeholder(tf.float32,[None,1],name = "Y") #1个标签数据(1列) # 定义一个命名空间
with tf.name_scope("model"):
# w 初始化值为shape = (12,1)的随机数 stddev为标准差
w = tf.Variable(tf.random_normal([12,1],stddev = 0.01),name = "w")
# b 初始化值为 1.0
b = tf.Variable(1.0,name = "b")
#w和x是矩阵相乘,用matmul,不能用mutiply或*
def model(x,w,b):
return tf.matmul(x,w) + b #预测计算操作,前向计算节点
pred = model(x,w,b) # 迭代轮次
train_epochs = 50 # 学习率
learning_rate = 0.01 #定义均方差损失函数
with tf.name_scope("LossFunction"):
loss_function = tf.reduce_mean(tf.pow(y -pred,2)) # 创建优化器
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss_function) #声明回话
sess = tf.Session()
#定义初始化变量的操作
init = tf.global_variables_initializer()
#启动会话
sess.run(init) #迭代训练
for epoch in range(train_epochs):
loss_sum = 0.0
for xs,ys in zip(x_data,y_data): #x_data得到的是一维数组,要变成二维数组;y_data得到的是一个常量,要变成二维数组
xs = xs.reshape(1,12)
ys = ys.reshape(1,1)
# Feed 数据必须和Placeholder 的shape 一致
_,loss = sess.run([optimizer,loss_function],feed_dict={x:xs,y:ys}) loss_sum = loss_sum + loss #打乱数据顺序
x_data,y_data = shuffle(x_data,y_data) b0temp = b.eval(session=sess)
w0temp = w.eval(session=sess)
loss_average = loss_sum / len(y_data) print("epoch=",epoch+1,"loss=",loss_average,"b=",b0temp,"w=",w0temp)
注:Done!
5模型应用
5.1做预测
# 指定一条数据
n = 345
x_test = x_data[n] x_test = x_test.reshape(1,12)
predict = sess.run(pred,feed_dict={x:x_test})
print("预测值:%f" % predict) target = y_data[n]
print("标签值:%f" % target
# 随机确定一条数据
n = np.random.randint(506)
print(n)
x_test = x_data[n] x_test = x_test.reshape(1,12)
predict = sess.run(pred,feed_dict={x:x_test})
print("预测值:%f" % predict) target = y_data[n]
print("标签值:%f" % target)
![]()
6可视化训练过程中的损失值
6.1每轮训练后添加一个这一轮的Loss值
%matplotlib notebook import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.utils import shuffle # 读取数据文件
df = pd.read_csv("D:\学习资料\课程学习资料\深度学习\TensorFlow/boston.csv",header = 0) # 获取df的值
df = df.values
print(df) # 将df转换成np的数组格式 ,内部存储格式不同,方便以后使用np的功能
df = np.array(df)
print(df) # 对特征数据 【0到11】列 做 (0-1)归一化 for i in range(12):
df[:,i] = (df[:,i] - df[:,i].min()) / (df[:,i].max() - df[:,i].min()) #x_data 为归一化后的前12列特征数据 x_data = df[:,:12]
#y_data 为最后一列标签数据 y_data = df[:,12] #定义特征数据和标签数据的占位符
#shape中 None 表示行的数量未知,在实际训练时决定一次代入多少行样本,从一
#个样本的随机SDG到批量SDG都可以
x = tf.placeholder(tf.float32,[None,12],name = "X") #12个特征数据(12列)
y = tf.placeholder(tf.float32,[None,1],name = "Y") #1个标签数据(1列) # 定义一个命名空间
with tf.name_scope("model"):
# w 初始化值为shape = (12,1)的随机数 stddev为标准差
w = tf.Variable(tf.random_normal([12,1],stddev = 0.01),name = "w")
# b 初始化值为 1.0
b = tf.Variable(1.0,name = "b")
#w和x是矩阵相乘,用matmul,不能用mutiply或*
def model(x,w,b):
return tf.matmul(x,w) + b #预测计算操作,前向计算节点
pred = model(x,w,b) # 迭代轮次
train_epochs = 50 # 学习率
learning_rate = 0.01 #定义均方差损失函数
with tf.name_scope("LossFunction"):
loss_function = tf.reduce_mean(tf.pow(y -pred,2)) # 创建优化器
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss_function) #声明回话
sess = tf.Session()
#定义初始化变量的操作
init = tf.global_variables_initializer()
#启动会话
sess.run(init)# 用于保存 loss值得列表
loss_list = [] #迭代训练
for epoch in range(train_epochs):
loss_sum = 0.0
for xs,ys in zip(x_data,y_data): #x_data得到的是一维数组,要变成二维数组;y_data得到的是一个常量,要变成二维数组
xs = xs.reshape(1,12)
ys = ys.reshape(1,1)
# Feed 数据必须和Placeholder 的shape 一致
_,loss = sess.run([optimizer,loss_function],feed_dict={x:xs,y:ys}) loss_sum = loss_sum + loss #打乱数据顺序
x_data,y_data = shuffle(x_data,y_data) b0temp = b.eval(session=sess)
w0temp = w.eval(session=sess)
loss_average = loss_sum / len(y_data) loss_list.append(loss_average) # 每轮训练后添加一个这一轮得loss平均值 print("epoch=",epoch+1,"loss=",loss_average,"b=",b0temp,"w=",w0temp)6.1.2可视化损失值
plt.figure()
plt.plot(loss_list)
# 指定一条数据
n = 345
x_test = x_data[n] x_test = x_test.reshape(1,12)
predict = sess.run(pred,feed_dict={x:x_test})
print("预测值:%f" % predict) target = y_data[n]
print("标签值:%f" % target)
6.2每步(单个样本)训练后添加这个Loss值
%matplotlib notebook import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.utils import shuffle # 读取数据文件
df = pd.read_csv("D:\学习资料\课程学习资料\深度学习\TensorFlow/boston.csv",header = 0) # 获取df的值
df = df.values
print(df) # 将df转换成np的数组格式 ,内部存储格式不同,方便以后使用np的功能
df = np.array(df)
print(df) # 对特征数据 【0到11】列 做 (0-1)归一化 for i in range(12):
df[:,i] = (df[:,i] - df[:,i].min()) / (df[:,i].max() - df[:,i].min()) #x_data 为归一化后的前12列特征数据 x_data = df[:,:12]
#y_data 为最后一列标签数据 y_data = df[:,12] #定义特征数据和标签数据的占位符
#shape中 None 表示行的数量未知,在实际训练时决定一次代入多少行样本,从一
#个样本的随机SDG到批量SDG都可以
x = tf.placeholder(tf.float32,[None,12],name = "X") #12个特征数据(12列)
y = tf.placeholder(tf.float32,[None,1],name = "Y") #1个标签数据(1列) # 定义一个命名空间
with tf.name_scope("model"):
# w 初始化值为shape = (12,1)的随机数 stddev为标准差
w = tf.Variable(tf.random_normal([12,1],stddev = 0.01),name = "w")
# b 初始化值为 1.0
b = tf.Variable(1.0,name = "b")
#w和x是矩阵相乘,用matmul,不能用mutiply或*
def model(x,w,b):
return tf.matmul(x,w) + b #预测计算操作,前向计算节点
pred = model(x,w,b) # 迭代轮次
train_epochs = 50 # 学习率
learning_rate = 0.01 #定义均方差损失函数
with tf.name_scope("LossFunction"):
loss_function = tf.reduce_mean(tf.pow(y -pred,2)) # 创建优化器
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss_function) #声明回话
sess = tf.Session()
#定义初始化变量的操作
init = tf.global_variables_initializer()
#启动会话
sess.run(init)
# 用于保存 loss值得列表
loss_list = [] #迭代训练
for epoch in range(train_epochs):
loss_sum = 0.0
for xs,ys in zip(x_data,y_data): #x_data得到的是一维数组,要变成二维数组;y_data得到的是一个常量,要变成二维数组
xs = xs.reshape(1,12)
ys = ys.reshape(1,1)
# Feed 数据必须和Placeholder 的shape 一致
_,loss = sess.run([optimizer,loss_function],feed_dict={x:xs,y:ys}) loss_sum = loss_sum + loss
loss_list.append(loss) # 每步添加一次 #打乱数据顺序
x_data,y_data = shuffle(x_data,y_data) b0temp = b.eval(session=sess)
w0temp = w.eval(session=sess)
loss_average = loss_sum / len(y_data) print("epoch=",epoch+1,"loss=",loss_average,"b=",b0temp,"w=",w0temp)6.2.2可视化损失值
plt.figure()
plt.plot(loss_list)
# 指定一条数据
n = 345
x_test = x_data[n] x_test = x_test.reshape(1,12)
predict = sess.run(pred,feed_dict={x:x_test})
print("预测值:%f" % predict) target = y_data[n]
print("标签值:%f" % target)
7加上 TensorBoard 可视化代码
%matplotlib notebook import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.utils import shuffle # 读取数据文件
df = pd.read_csv("D:\学习资料\课程学习资料\深度学习\TensorFlow/boston.csv",header = 0) # 获取df的值
df = df.values
print(df) # 将df转换成np的数组格式 ,内部存储格式不同,方便以后使用np的功能
df = np.array(df)
print(df) # 对特征数据 【0到11】列 做 (0-1)归一化 for i in range(12):
df[:,i] = (df[:,i] - df[:,i].min()) / (df[:,i].max() - df[:,i].min()) #x_data 为归一化后的前12列特征数据 x_data = df[:,:12]
#y_data 为最后一列标签数据 y_data = df[:,12] #定义特征数据和标签数据的占位符
#shape中 None 表示行的数量未知,在实际训练时决定一次代入多少行样本,从一
#个样本的随机SDG到批量SDG都可以
x = tf.placeholder(tf.float32,[None,12],name = "X") #12个特征数据(12列)
y = tf.placeholder(tf.float32,[None,1],name = "Y") #1个标签数据(1列) # 定义一个命名空间
with tf.name_scope("model"):
# w 初始化值为shape = (12,1)的随机数 stddev为标准差
w = tf.Variable(tf.random_normal([12,1],stddev = 0.01),name = "w")
# b 初始化值为 1.0
b = tf.Variable(1.0,name = "b")
#w和x是矩阵相乘,用matmul,不能用mutiply或*
def model(x,w,b):
return tf.matmul(x,w) + b #预测计算操作,前向计算节点
pred = model(x,w,b) # 迭代轮次
train_epochs = 50 # 学习率
learning_rate = 0.01 #定义均方差损失函数
with tf.name_scope("LossFunction"):
loss_function = tf.reduce_mean(tf.pow(y -pred,2)) # 创建优化器
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss_function) #声明回话
sess = tf.Session()
#定义初始化变量的操作
init = tf.global_variables_initializer()
#启动会话
sess.run(init) # 用于保存 loss值得列表
loss_list = [] #迭代训练
for epoch in range(train_epochs):
loss_sum = 0.0
for xs,ys in zip(x_data,y_data): #x_data得到的是一维数组,要变成二维数组;y_data得到的是一个常量,要变成二维数组
xs = xs.reshape(1,12)
ys = ys.reshape(1,1)
# Feed 数据必须和Placeholder 的shape 一致
_,loss = sess.run([optimizer,loss_function],feed_dict={x:xs,y:ys}) loss_sum = loss_sum + loss #打乱数据顺序
x_data,y_data = shuffle(x_data,y_data) b0temp = b.eval(session=sess)
w0temp = w.eval(session=sess)
loss_average = loss_sum / len(y_data) loss_list.append(loss_average) # 每轮训练后添加一个这一轮得loss平均值 print("epoch=",epoch+1,"loss=",loss_average,"b=",b0temp,"w=",w0temp)8为TensorFlow可视化准备数据
8.1修改代码
%matplotlib notebook import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.utils import shuffle # 读取数据文件
df = pd.read_csv("D:\学习资料\课程学习资料\深度学习\TensorFlow/boston.csv",header = 0) # 获取df的值
df = df.values
print(df) # 将df转换成np的数组格式 ,内部存储格式不同,方便以后使用np的功能
df = np.array(df)
print(df) # 对特征数据 【0到11】列 做 (0-1)归一化 for i in range(12):
df[:,i] = (df[:,i] - df[:,i].min()) / (df[:,i].max() - df[:,i].min()) #x_data 为归一化后的前12列特征数据 x_data = df[:,:12]
#y_data 为最后一列标签数据 y_data = df[:,12] #定义特征数据和标签数据的占位符
#shape中 None 表示行的数量未知,在实际训练时决定一次代入多少行样本,从一
#个样本的随机SDG到批量SDG都可以
x = tf.placeholder(tf.float32,[None,12],name = "X") #12个特征数据(12列)
y = tf.placeholder(tf.float32,[None,1],name = "Y") #1个标签数据(1列) # 定义一个命名空间
with tf.name_scope("model"):
# w 初始化值为shape = (12,1)的随机数 stddev为标准差
w = tf.Variable(tf.random_normal([12,1],stddev = 0.01),name = "w")
# b 初始化值为 1.0
b = tf.Variable(1.0,name = "b")
#w和x是矩阵相乘,用matmul,不能用mutiply或*
def model(x,w,b):
return tf.matmul(x,w) + b #预测计算操作,前向计算节点
pred = model(x,w,b) # 迭代轮次
train_epochs = 50 # 学习率
learning_rate = 0.01 #定义均方差损失函数
with tf.name_scope("LossFunction"):
loss_function = tf.reduce_mean(tf.pow(y -pred,2)) # 创建优化器
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss_function) #声明回话
sess = tf.Session()
#定义初始化变量的操作
init = tf.global_variables_initializer()8.1.1设置日志存储目录
# 设置日志存储目录
logdir = 'd:/log'8.1.2创建一个操作,用于记录损失值loss ,后面在TensorBoard 中SCALARS 栏可见
# 创建一个操作,用于记录损失值loss ,后面在TensorBoard 中SCALARS 栏可见
sum_loss_op = tf.summary.scalar("loss",loss_function)8.1.3把所有需要记录摘要日志文件得合并,方便一次性写入
#把所有需要记录摘要日志文件得合并,方便一次性写入
merged = tf.summary.merge_all()#启动会话
sess.run(init)8.1.4创建摘要得文件写入器(FileWriter)
#创建摘要write,将计算图写入摘要,后面的在TensorBoard中GRAPHS可见
writer = tf.summary.FileWriter(logdir,sess.graph)8.1.5writer.add_summary(summary_str, epoch)
# 用于保存 loss值得列表
loss_list = [] #迭代训练
for epoch in range(train_epochs):
loss_sum = 0.0
for xs,ys in zip(x_data,y_data): #x_data得到的是一维数组,要变成二维数组;y_data得到的是一个常量,要变成二维数组
xs = xs.reshape(1,12)
ys = ys.reshape(1,1)
# Feed 数据必须和Placeholder 的shape 一致
_,summary_str,loss = sess.run([optimizer,sum_loss_op,loss_function],feed_dict={x:xs,y:ys}) writer.add_summary(summary_str,epoch)
loss_sum = loss_sum + loss #打乱数据顺序
x_data,y_data = shuffle(x_data,y_data) b0temp = b.eval(session=sess)
w0temp = w.eval(session=sess)
loss_average = loss_sum / len(y_data) loss_list.append(loss_average) # 每轮训练后添加一个这一轮得loss平均值 print("epoch=",epoch+1,"loss=",loss_average,"b=",b0temp,"w=",w0temp)8.2运行TensorBoard
8.2.1打开Anaconda Prompt
激活TensorFlow: Activate tensorflow
进入日志存储目录 : cd d:\log
打开TensorBoard: tensorboard --logdir=d:\log8.2.2TensorBoard 查看loss
8.2.3TensorBoard查看计算图
TensorFlow 多元线性回归【波士顿房价】的更多相关文章
- TensorFlow多元线性回归实现
多元线性回归的具体实现 导入需要的所有软件包: 因为各特征的数据范围不同,需要归一化特征数据.为此定义一个归一化函数.另外,这里添加一个额外的固定输入值将权重和偏置结合起来.为此定义函数 appe ...
- Tensorflow之多元线性回归问题(以波士顿房价预测为例)
一.根据波士顿房价信息进行预测,多元线性回归+特征数据归一化 #读取数据 %matplotlib notebook import tensorflow as tf import matplotlib. ...
- TensorFlow从0到1之TensorFlow实现多元线性回归(16)
在 TensorFlow 实现简单线性回归的基础上,可通过在权重和占位符的声明中稍作修改来对相同的数据进行多元线性回归. 在多元线性回归的情况下,由于每个特征具有不同的值范围,归一化变得至关重要.这里 ...
- 【TensorFlow篇】--Tensorflow框架初始,实现机器学习中多元线性回归
一.前述 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,T ...
- 利用TensorFlow实现多元线性回归
利用TensorFlow实现多元线性回归,代码如下: # -*- coding:utf-8 -*- import tensorflow as tf import numpy as np from sk ...
- TensorFlow简单线性回归
TensorFlow简单线性回归 将针对波士顿房价数据集的房间数量(RM)采用简单线性回归,目标是预测在最后一列(MEDV)给出的房价. 波士顿房价数据集可从http://lib.stat.cmu.e ...
- machine learning 之 多元线性回归
整理自Andrew Ng的machine learning课程 week2. 目录: 多元线性回归 Multivariates linear regression /MLR Gradient desc ...
- 多元线性回归(Multivariate Linear Regression)简单应用
警告:本文为小白入门学习笔记 数据集: http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=DeepLearnin ...
- 斯坦福机器学习视频笔记 Week2 多元线性回归 Linear Regression with Multiple Variables
相比于week1中讨论的单变量的线性回归,多元线性回归更具有一般性,应用范围也更大,更贴近实际. Multiple Features 上面就是接上次的例子,将房价预测问题进行扩充,添加多个特征(fea ...
随机推荐
- centos7开启ntp并同步时间到指定时区
前提:近期公司都是使用的直接对外的云服务器,在登上服务器后用date命令查看新服务器的时间,发现并不是标准时间,于是需要做时间同步.我这里讲的是能连接外网的情况下,在服务器不多的情况下是否此方法,大型 ...
- 添砖加瓦:简述ELK部署
1.准备工作 ELK下载:https://www.elastic.co/downloads/ jdk version:1.8.0_162 2.环境搭建 ElasticSearch: (1)不能使用ro ...
- 添砖加瓦:[OpenCV]入门(一)
1.OpenCV安装 (1)下载: 本文采用的是源码的方式进行安装,源码可以从OpenCV官网下载.这里以3.4.1为例. (2)安装 这里下载到的文件为3.4.1.zip."unzip 3 ...
- Android 粘合剂'Binder'
背景知识 要详细掌握Android 的Binder通信机制需要先提前了解一些通信原理与Linux系统的基础知识. RPC RPC(Remote Procedure Call),即远程过程调用,也被称为 ...
- 面试的绝招(V1.0)
<软件自动化测试开发>出版了 测试开发公开课培训大讲堂 微信公众号:测试开发社区 测试开发QQ群:173172133 咨询QQ:7980068 咨询微信:zouhui1003it
- 网络编程01 · 艺
Web Socket和Socket 套接字,实际就是传输层的接口.用于抽象传输层,隐藏细节.一对套接字可以进行通信. Web Socket,是基于TCP协议的.类似于,http. 为什么需要Web S ...
- golang 统计系统测试覆盖率
golang 统计系统测试覆盖率 参考资料 https://www.elastic.co/blog/code-coverage-for-your-golang-system-tests https:/ ...
- 开发项目是Integer 与int 什么时候用
什么时候用Integer : 如果该属性所对应的数据库的字段是主键或者是外键时,用Integer:因为Integer的默认值为null,数据库的主键或者外键不能为空,但是可以为null 什么时候用in ...
- getUserMedia API及HTML5 调用手机摄像头拍照
getUserMedia API简介 HTML5的getUserMedia API为用户提供访问硬件设备媒体(摄像头.视频.音频.地理位置等)的接口,基于该接口,开发者可以在不依赖任何浏览器插件的条件 ...
- SVG 新手入门
svg 入门新认知 一.第一步创建设置svg <svg width="100%" height="500"> </svg> 设置粗细 5 ...























