Spark GraphX初探
1. Graphx概念
针对某些领域,如社交网络、语言建模等,graph-parallel系统可以高效地执行复杂的图形算法,比一般的data-parallel系统更快。
Graphx是将graph-parallel的data-parallel统一到一个系统中。允许用户将数据当成一个图或一个集合RDD,而简化数据移动或复杂操作。
2. 属性图
属性图为有向多重图,带有链接到每个顶点和边的用户定义的对象。有向多重图多个并行的边共享相同源和目的地顶点。每个顶点由一个唯一的64位长的标识符(VertexId)作为key,顶点拥有相同的源和目的顶点标识符。
属性图通过vertex(VD)和edge(ED)类型参数化,分别与每个顶点和边相关联的对象的类型。某些情况下,相同图形中希望顶点拥有不同属性类型,可通过继承实现。
class VertexProperty()
case class UserProperty(val name: String) extends VertexProperty
case class ProductProperty(val name: String, val price: Double) extends VertexProperty var grapg: Graph[VertexProperty, String] = null
与RDD类似,属性图是不可变、分布式、容错的。图中的值或结构变化需要生成新的图实现。注意:原始图中的大部分可以在新图中重用,以减少固有功能数据结构成本。
逻辑上,属性图对应一对类型化的集合RDD,包含了每一个顶点和边属性。
class Graph[VD, ED]{
val vertices: VertexRDD[VD]
val edges: EdgeRDD[ED]
}
VertexRDD[VD]和EdgeRDD[ED]分别继承于RDD[(VertexID, VD)]和RDD[Edge[ED]]。
Graph也包含一个三元组视图,三元组视图逻辑上将顶点和边的属性保存为一个RDD[EdgeTriplet[VD, ED]],EdgeTriplet可通过下图理解。
EdgeTriplet继承于Edge类,并加入srcAttr和dstAttr成员,分别包含源和目标的属性。
例:
import org.apache.spark.graphx.{Edge, Graph, VertexId}
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} class GraphTest1 { def main(args: Array[String]): Unit = {
val sc = new SparkContext(new SparkConf().setAppName("GraphTest1")) // 创建顶点信息
val users: RDD[(VertexId, (String, String))] = sc.parallelize(
Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")), (5L, ("franklin", "prof")), (2L, ("istoica", "prof")))
) // 创建图的Edge类,Edge类具有srcId和dstId分别对应与源和目标点的标识符,次明早attr成员存储边属性
val relationships: RDD[Edge[String]] = sc.parallelize(
Array(Edge(3L, 7L, "collab"), Edge(5L, 3L, "advisor"), Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi"))
) // 定义一个默认用户
val defaultUser = ("John Doe", "Missing") // 基于Graph对象构造初始化图
val graph = Graph(users, relationships, defaultUser) // 统计用户为postdoc的总数
// graph.vertices返回VertexRDD[(String, String)],继承于RDD[(VertexID, (String, String))]
graph.vertices.filter{case (id, (name, pos)) => pos == "postdoc"}.count // 统计src > dst的边总数
// graph.edges返回Edge[String]对象的EdgeRDD
// graph.edges.filter(e => e.srcId > e.dstId).count
graph.edges.filter{case Edge(srcId, dstId, attr) => srcId > dstId}.count() // graph.triplets包含的属性有Array(((3,(rxin,student)),(7,(jgonzal,postdoc)),collab))
val facts = graph.triplets.map(triplet => triplet.srcAttr._1 + " is the " + triplet.attr + triplet.dstAttr._1 )
facts.collect().foreach(println) sc.stop()
} }
3. 图操作符
(1) 属性操作
属性图包含操作如下,每个操作都产生一个新图,包含用户自定义map操作修改后的顶点或边的属性。
a. mapVertices[VD2: ClassTag](map: (VertexId, VD) => VD2): Graph[VD2, ED]
b. mapEdges[ED2: ClassTag](map: Edge[ED] => ED2): Graph[VD, ED2]
c. mapTriplets[ED2: ClassTag](map: EdgeTriplet[VD, ED] => ED2): Graph[VD, ED2]
注意:每种情况下图结构均不受影响,如上操作的一个重要特征是允许所得图形重用原有图形的结构索引ndices。
例:
import org.apache.spark.graphx.{Edge, Graph, VertexId, GraphOps}
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext} class GraphTest1 { def main(args: Array[String]): Unit = {
val sc = new SparkContext(new SparkConf().setAppName("GraphTest1")) // 创建顶点信息
val users: RDD[(VertexId, (String, String))] = sc.parallelize(
Array((3L, ("rxin", "student")), (7L, ("jgonzal", "postdoc")), (5L, ("franklin", "prof")), (2L, ("istoica", "prof")))
) // 创建图的Edge类,Edge类具有srcId和dstId分别对应与源和目标点的标识符,次明早attr成员存储边属性
val relationships: RDD[Edge[String]] = sc.parallelize(
Array(Edge(3L, 7L, "collab"), Edge(5L, 3L, "advisor"), Edge(2L, 5L, "colleague"), Edge(5L, 7L, "pi"))
) // 定义一个默认用户
val defaultUser = ("John Doe", "Missing") // 基于Graph对象构造初始化图
val graph = Graph(users, relationships, defaultUser) // 统计用户为postdoc的总数
// graph.vertices返回VertexRDD[(String, String)],继承于RDD[(VertexID, (String, String))]
graph.vertices.filter{case (id, (name, pos)) => pos == "postdoc"}.count // 统计src > dst的边总数
// graph.edges返回Edge[String]对象的EdgeRDD
// graph.edges.filter(e => e.srcId > e.dstId).count
graph.edges.filter{case Edge(srcId, dstId, attr) => srcId > dstId}.count() // graph.triplets包含的属性有Array(((3,(rxin,student)),(7,(jgonzal,postdoc)),collab))
val facts = graph.triplets.map(triplet => triplet.srcAttr._1 + " is the " + triplet.attr + triplet.dstAttr._1 )
facts.collect().foreach(println) // 指定新图,顶点属性为出度
val inputGraph: Graph[Int, String] = graph.outerJoinVertices(graph.outDegrees)((vid, _, degOpt) => degOpt.getOrElse(0)) // Construct a graph where each edge contains the weight and each vertex is the initial PageRank
val outputGraph:Graph[Double, Double] = inputGraph.mapTriplets(triplet => 1.0 / triplet.srcAttr).mapVertices((_id, _) => 1.0) sc.stop()
} }
(2) 结构性操作
图中基本的结构性操作包含:
a. reverse: Graph[VD, ED]:返回新图,图的边的方向都是反转,可用于计算反转的PageRank
b. subgraph(epred: EdgeTriplet[VD,ED] => Boolean, vpred: (VertexId, VD) => Boolean): Graph[VD, ED]:利用顶点和边的predicates,返回的图仅仅包含满足顶点predicates的顶点,满足边predicates的边以及满足顶点predicates的连接顶点(connect vertices)。应用场景:
获取感兴趣的 顶点和边组成的图或者清除断开链接后的图。
例:
val validGraph = graph.subgraph(vpred = (id, attr) => !attr._2.equals("Missing"))
validGraph.vertices.collect.foreach(println)
validGraph.triplets.map(triplet => triplet.srcAttr._1 + " is the " + triplet.attr + " of "+triplet.dstAttr._1).collect
c. mask[VD2, ED2](other: Graph[VD2, ED2]): Graph[VD, ED]:构建子图,包含输入图中的顶点和边。可与subgraph结合,基于另一个相关图的特征去约束一个图。
例:利用缺失顶点的图运行连通体,返回有效子图
val ccGraph = graph.connectedComponents() // No longer contains missing field
val validCCGraph = ccGraph.mask(validGraph) // Restrict the answer to the valid subgraph
d. groupEdges(merge: (ED, ED) => ED): Graph[VD,ED]:合并图中的并行边(如顶点对之间重复的边),降低图的大小
(3) 连接操作
用于将外部数据加入到图中。
a. joinVertices[U: ClassTag](table: RDD[(VertexId, U)])(mapFunc: (VertexId, VD, U) => VD): Graph[VD, ED]:将输入RDD和顶点相结合,返回一个新的带有顶点特征的图。
注意:对于给定顶点,RDD中有超过1个匹配值时,则仅使用其中一个。建议使用如下方法,保证RDD的唯一性。
val nonUniqueCosts: RDD[(VertexId, Double)]
val uniqueCosts: VertexRDD[Double] = graph.vertices.aggregateUsingIndex(nonUniqueCosts, (a, b) => a + b)
val joinedGraph = graph.joinVertices(uniqueCosts)((id, oldCost, extraCost) => oldCost + extraCost)
b. outerJoinVertices(mapFunc: (VertexId, VD, Option[U]) => VD2): Graph[VD2, ED]:与joinVertices类似,因为不是所有顶点在RDD中拥有匹配的值,map函数需要一个Option类型
Spark GraphX初探的更多相关文章
- Spark GraphX学习资料
<Spark GraphX 大规模图计算和图挖掘> http://book.51cto.com/art/201408/450049.htm http://www.csdn.net/arti ...
- 明风:分布式图计算的平台Spark GraphX 在淘宝的实践
快刀初试:Spark GraphX在淘宝的实践 作者:明风 (本文由团队中梧苇和我一起撰写,并由团队中的林岳,岩岫,世仪等多人Review,发表于程序员的8月刊,由于篇幅原因,略作删减,本文为完整版) ...
- Spark Graphx编程指南
问题导读1.GraphX提供了几种方式从RDD或者磁盘上的顶点和边集合构造图?2.PageRank算法在图中发挥什么作用?3.三角形计数算法的作用是什么?Spark中文手册-编程指南Spark之一个快 ...
- Spark Graphx
Graphx 概述 Spark GraphX是一个分布式图处理框架,它是基于Spark平台提供对图计算和图挖掘简洁易用的而丰富的接口,极大的方便了对分布式图处理的需求. ...
- Spark GraphX实例(1)
Spark GraphX是一个分布式的图处理框架.社交网络中,用户与用户之间会存在错综复杂的联系,如微信.QQ.微博的用户之间的好友.关注等关系,构成了一张巨大的图,单机无法处理,只能使用分布式图处理 ...
- Spark GraphX图处理编程实例
所构建的图如下: Scala程序代码如下: import org.apache.spark._ import org.apache.spark.graphx._ // To make some of ...
- Spark GraphX 的数据可视化
概述 Spark GraphX 本身并不提供可视化的支持, 我们通过第三方库 GraphStream 和 Breeze 来实现这一目标 详细 代码下载:http://www.demodashi.com ...
- 大数据技术之_19_Spark学习_05_Spark GraphX 应用解析 + Spark GraphX 概述、解析 + 计算模式 + Pregel API + 图算法参考代码 + PageRank 实例
第1章 Spark GraphX 概述1.1 什么是 Spark GraphX1.2 弹性分布式属性图1.3 运行图计算程序第2章 Spark GraphX 解析2.1 存储模式2.1.1 图存储模式 ...
- 十、spark graphx的scala示例
简介 spark graphx官网:http://spark.apache.org/docs/latest/graphx-programming-guide.html#overview spark g ...
随机推荐
- HTML5——5 HTML5 SVG
<!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- CSS世界中那些说起来很冷的知识
CSS世界中那些说起来很冷的知识 最近读了张鑫旭的新书<CSS世界>收获了不少对CSS的深度理解 也正值个人在公司内部进行部分章节的内容分享,于是顺带着直接把我即将分享的内容先给大家过过目 ...
- [转载]springboot--常用注解--@configration、@Bean
springboot--常用注解--@configration.@Bean @Target({ElementType.TYPE}) @Retention(RetentionPolicy.RUNTIME ...
- c语言第一次作业1
第一次作业 一 你对软件工程或者计算机科学与技术专业的了解是什么? 软件工程是一门研究用工程化方法构建和维护有效的,实用的和高质量的软件的学科,涉及程序语言设计,数据库,软件开发工具,系统平台,设计模 ...
- mysql批量新增和批量删除
首先推荐使用PreparedStatement的批量处理操作. Connection conn = null; PreparedStatement stmt = null; try{ Class.fo ...
- pycharm mysql数据源配置、SQL方言配置
会发现有提示,看着不爽,但不影响运行程序, 这里提示没有配置数据源,现在配置MYSQL数据源 然后看到右边Database选项卡,点击 然后可能会出现网络防火墙提示,选择全部允许,之后可能会在pych ...
- luogu 2279 [HNOI2003]消防局的设立 树形dp
就是细节多一些,思路都非常常规. Code: #include <bits/stdc++.h> #define N 1005 #define inf 1061109567 #define ...
- [Vue] : 键盘修饰符
键盘修饰符以及自定义键盘修饰符 为文本框回车键绑定事件 <input type="text" class="form-control" v-model=& ...
- oracle的事务
一.事务 保证数据的一致性,有一组相关的dml语句组成,该组的dml语句要么全部成功,要么全部失败 如:网上转账就是典型的要用事物来处理,用以保证数据的一致性 二.事务和锁 当执行事物操作时(dml语 ...
- 转载一篇比较详细的讲解html,css的一篇文章,很长
转载自这里,转载请注明出处. DIV+CSS系统学习笔记回顾 第一部分 HTML 第一章 职业规划和前景 职业方向规划定位: web前端开发工程师 web网站架构师 自己创业 转岗管理或其他 ...