%matplotlib inline

数据并行(选读)

Authors: Sung Kim and Jenny Kang

在这个教程里,我们将学习如何使用 DataParallel 来使用多GPU。

PyTorch非常容易就可以使用多GPU,用如下方式把一个模型放到GPU上:


device = torch.device("cuda:0")
model.to(device)

GPU:

然后复制所有的张量到GPU上:


mytensor = my_tensor.to(device)

请注意,只调用my_tensor.to(device)并没有复制张量到GPU上,而是返回了一个copy。所以你需要把它赋值给一个新的张量并在GPU上使用这个张量。

在多GPU上执行前向和反向传播是自然而然的事。

但是PyTorch默认将只使用一个GPU。

使用DataParallel可以轻易的让模型并行运行在多个GPU上。


model = nn.DataParallel(model)

这才是这篇教程的核心,接下来我们将更详细的介绍它。

导入和参数

导入PyTorch模块和定义参数。

import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader # Parameters and DataLoaders
input_size = 5
output_size = 2 batch_size = 30
data_size = 100

Device

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

虚拟数据集

制作一个虚拟(随机)数据集,

你只需实现 __getitem__

class RandomDataset(Dataset):

    def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size) def __getitem__(self, index):
return self.data[index] def __len__(self):
return self.len rand_loader = DataLoader(dataset=RandomDataset(input_size, data_size), batch_size=batch_size, shuffle=True)

简单模型

作为演示,我们的模型只接受一个输入,执行一个线性操作,然后得到结果。

说明:DataParallel能在任何模型(CNN,RNN,Capsule Net等)上使用。

我们在模型内部放置了一条打印语句来打印输入和输出向量的大小。

请注意批次的秩为0时打印的内容。

class Model(nn.Module):
# Our model def __init__(self, input_size, output_size):
super(Model, self).__init__()
self.fc = nn.Linear(input_size, output_size) def forward(self, input):
output = self.fc(input)
print("\tIn Model: input size", input.size(),
"output size", output.size()) return output

创建一个模型和数据并行

这是本教程的核心部分。

首先,我们需要创建一个模型实例和检测我们是否有多个GPU。

如果有多个GPU,使用nn.DataParallel来包装我们的模型。

然后通过mmodel.to(device)把模型放到GPU上。

model = Model(input_size, output_size)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
model = nn.DataParallel(model) model.to(device)
Model(
(fc): Linear(in_features=5, out_features=2, bias=True)
)

运行模型

现在可以看到输入和输出张量的大小。

for data in rand_loader:
input = data.to(device)
output = model(input)
print("Outside: input size", input.size(),
"output_size", output.size())
	In Model: input size torch.Size([30, 5]) output size torch.Size([30, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([30, 5]) output size torch.Size([30, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([30, 5]) output size torch.Size([30, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

结果

当没有或者只有一个GPU时,对30个输入和输出进行批处理,得到了期望的一样得到30个输入和输出,但是如果你有多个GPU,你得到如下的结果。

2 GPUs

~

If you have 2, you will see:

.. code:: bash

# on 2 GPUs
Let's use 2 GPUs!
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
In Model: input size torch.Size([15, 5]) output size torch.Size([15, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
In Model: input size torch.Size([5, 5]) output size torch.Size([5, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

3 GPUs

~

If you have 3 GPUs, you will see:

.. code:: bash

Let's use 3 GPUs!
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
In Model: input size torch.Size([10, 5]) output size torch.Size([10, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

8 GPUs

~~

If you have 8, you will see:

.. code:: bash

Let's use 8 GPUs!
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([4, 5]) output size torch.Size([4, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([30, 5]) output_size torch.Size([30, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
In Model: input size torch.Size([2, 5]) output size torch.Size([2, 2])
Outside: input size torch.Size([10, 5]) output_size torch.Size([10, 2])

总结

DataParallel会自动的划分数据,并将作业发送到多个GPU上的多个模型。

并在每个模型完成作业后,收集合并结果并返回。

更多信息请看这里:

https://pytorch.org/tutorials/beginner/former_torchies/parallelism_tutorial.html.

PyTorch Tutorials 5 数据并行(选读)的更多相关文章

  1. PyTorch Data Parrallel数据并行

    PyTorch Data Parrallel数据并行 可选择:数据并行处理 本文将学习如何用 DataParallel 来使用多 GPU. 通过 PyTorch 使用多个 GPU 非常简单.可以将模型 ...

  2. [源码解析] PyTorch分布式优化器(2)----数据并行优化器

    [源码解析] PyTorch分布式优化器(2)----数据并行优化器 目录 [源码解析] PyTorch分布式优化器(2)----数据并行优化器 0x00 摘要 0x01 前文回顾 0x02 DP 之 ...

  3. [源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampler

    [源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampler 目录 [源码解析] PyTorch 分布式(1) --- 数据加载之DistributedSampl ...

  4. [源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader

    [源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader 目录 [源码解析] PyTorch 分布式(2) --- 数据加载之DataLoader 0x00 摘要 0x01 ...

  5. C#并行编程之数据并行

    所谓的数据并行的条件是: 1.拥有大量的数据. 2.对数据的逻辑操作都是一致的. 3.数据之间没有顺序依赖. 运行并行编程可以充分的利用现在多核计算机的优势.记录代码如下: public class ...

  6. C#并行编程-PLINQ:声明式数据并行

    目录 C#并行编程-相关概念 C#并行编程-Parallel C#并行编程-Task C#并行编程-并发集合 C#并行编程-线程同步原语 C#并行编程-PLINQ:声明式数据并行 背景 通过LINQ可 ...

  7. C#并行编程--命令式数据并行(Parallel.Invoke)---与匿名函数一起理解(转载整理)

    命令式数据并行   Visual C# 2010和.NETFramework4.0提供了很多令人激动的新特性,这些特性是为应对多核处理器和多处理器的复杂性设计的.然而,因为他们包括了完整的新的特性,开 ...

  8. 深度神经网络DNN的多GPU数据并行框架 及其在语音识别的应用

    深度神经网络(Deep Neural Networks, 简称DNN)是近年来机器学习领域中的研究热点,产生了广泛的应用.DNN具有深层结构.数千万参数需要学习,导致训练非常耗时.GPU有强大的计算能 ...

  9. 【深度学习系列2】Mariana DNN多GPU数据并行框架

    [深度学习系列2]Mariana DNN多GPU数据并行框架  本文是腾讯深度学习系列文章的第二篇,聚焦于腾讯深度学习平台Mariana中深度神经网络DNN的多GPU数据并行框架.   深度神经网络( ...

随机推荐

  1. SQL SERVER-数据库备份及记录

    --完整备份 BACKUP DATABASE JINWEI TO DISK='D:\BAK\JINWEIFULL.bak' --日志备份 BACKUP LOG JINWEI TO DISK='D:\B ...

  2. Python标准库3.4.3-random

    9.6. random — Generate pseudo-random numbers Source code: Lib/random.py  翻译:Z.F. This module impleme ...

  3. 剖析.o文件ELF组成

    ELF文件结构组成 ①总共13个节 ②每个节都有一个编号.从ELF头开始编号,编号从0开始,编号的作用就是用来索引(找到)不同节的. ③每个.o的都是这样的结构.链接时要做的就是,将ELF格式的.o全 ...

  4. 个性化召回算法实践(一)——CF算法

    协同过滤推荐(Collaborative Filtering Recommendation)主要包括基于用户的协同过滤算法与基于物品的协同过滤算法. 下面,以movielens数据集为例,分别实践这两 ...

  5. subprocess、struct模块的简单应用与ssh模型(黏包)

    一.subprocess模块 #可以通过传递字符串命令,帮你去实现一些操作系统的命令. import subprocess res = subprocess.Popen("dir" ...

  6. 【转】SENDING KEY VALUE MESSAGES WITH THE KAFKA CONSOLE PRODUCER

    SENDING KEY VALUE MESSAGES WITH THE KAFKA CONSOLE PRODUCER When working with Kafka you might find yo ...

  7. xld特征

    halcon中什么是xld? xld(eXtended Line Descriptions) 扩展的线性描述,它不是基于像素的,人们称它是亚像素,只不过比像素更精确罢了,可以精确到像素内部的一种描述. ...

  8. 使用SpringTask 进行Java定时任务开发

    (我这里的案例 是模拟 将项目包放到tomcat里面运行 ) 新建一个Java Web的Maven项目....... 此过程省略... 项目结构如图: 1.pom.xml 配置 <?xml ve ...

  9. 2019牛客暑期多校训练营(第九场)All men are brothers——并查集&&组合数

    题意 最初有 $n$ 个人且互不认识,接下来 $m$ 行,每行有 $x,y$,表示 $x$ 和 $y$ 交朋友,朋友关系满足自反性和传递性,每次输出当前选取4个人且互不认识的方案数. 分析 并查集维护 ...

  10. 01_Tutorial 1: Serialization 序列化

    1.序列化 1.官方教程 https://q1mi.github.io/Django-REST-framework-documentation/tutorial/1-serialization_zh/ ...