知识掌握

cv2.threshold()函数:

设置固定级别的阈值应用于多通道矩阵,将灰度图像变换二值图像,或去除指定级别的噪声,或过滤掉过小或者过大的像素点。

Python: cv2.threshold(src, thresh, maxval, type[, dst]) → retval, dst

在其中:

src:表示的是图片源

thresh:表示的是阈值(起始值)

maxval:表示的是最大值

type:表示的是这里划分的时候使用的是什么类型的算法,常用值为0(cv2.THRESH_BINARY)

import cv2  

img = cv2.imread('1.jpg')
cv2.imshow("src", img)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, dst = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
cv2.imshow("dst", dst)
cv2.waitKey(0)



cv2.findContours()函数:

查找检测物体的轮廓

cv2.findContours(image, mode, method)

opencv2返回两个值:contours:hierarchy。

注:opencv3会返回三个值,分别是img, countours, hierarchy

在其中:

image:表示的是寻找轮廓的图像;

mode:表示的是轮廓的检索模式,有四种:

  • cv2.RETR_EXTERNAL表示只检测外轮廓
  • cv2.RETR_LIST检测的轮廓不建立等级关系
  • cv2.RETR_CCOMP建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。
  • cv2.RETR_TREE建立一个等级树结构的轮廓。

method:表示的是轮廓的近似办法

  • cv2.CHAIN_APPROX_NONE存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1
  • cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
  • cv2.CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用teh-Chinl chain 近似算法
import numpy as np
import cv2 rectangle = np.zeros((300,300),dtype="uint8")
cv2.rectangle(rectangle,(25,25),(275,275),255,-1)
cv2.imshow("Rectangle",rectangle) img, countours, hierarchy = cv2.findContours(rectangle, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
print(countours)
print(hierarchy)
cv2.waitKey(0)

[array([[[ 25, 25]],

[[ 25, 275]],

[[275, 275]],

[[275, 25]]], dtype=int32)]

[[[-1 -1 -1 -1]]]

cv2.polylines函数:

绘制多边形

cv2.polylines(img, pts, isClosed, color[, thickness[, lineType[,shift]]])

首先需要顶点坐标.将这些点转换为rowsx1x2形状的数组,其中rows是顶点数,它应该是int32类型。

import numpy as np
import cv2
# Create a black image
img = np.zeros((200, 200, 3), np.uint8) pts = np.array([[10, 5], [20, 30], [70, 20], [50, 10]], np.int32) # 每个点都是(x, y)
pts = pts.reshape((-1, 1, 2))
cv2.polylines(img, [pts], True, (0, 255, 255)) pts = np.array([[100, 5], [150, 30], [80, 20], [90, 10]], np.int32)
cv2.polylines(img, [pts], False, (0, 255, 255))
cv2.imshow('img2', img) cv2.waitKey()

如果第三个参数为False,您将获得连接所有点的折线,而不是闭合形状。

cv2.polylines()可用于绘制多条线.只需创建要绘制的所有行的列表并将其传递给函数, 所有线条都将单独绘制.绘制一组行比为每行调用cv2.line()要好得多,速度更快.



cv2.fillPoly)函数

可以用来填充任意形状的图型.可以用来绘制多边形,工作中也经常使用非常多个边来近似的画一条曲线.cv2.fillPoly()函数可以一次填充多个图型.

cv2.fillPoly(image,ppt,Scalar(255,255,255))

image:表示的是多边形将被画到image上

ppt:表示的是多边形的顶点集为ppt

Scalar:表示的是多边形的颜色定义为Scarlar(255,255,255),即RGB的值为白色

img = np.zeros((1080, 1920, 3), np.uint8)
area1 = np.array([[250, 200], [300, 100], [750, 800], [100, 1000]])
area2 = np.array([[1000, 200], [1500, 200], [1500, 400], [1000, 400]]) cv2.fillPoly(img, [area1, area2], (255, 255, 255)) plt.imshow(img)
plt.show()



按位操作-bitwise operations

import numpy as np
import cv2 rectangle = np.zeros((300,300),dtype="uint8")
cv2.rectangle(rectangle,(25,25),(275,275),255,-1)
cv2.imshow("Rectangle",rectangle) circle = np.zeros((300,300),dtype="uint8")
cv2.circle(circle,(150,150),150,255,-1)
cv2.imshow("Circle",circle) bitwiseAnd = cv2.bitwise_and(rectangle,circle)
cv2.imshow("And",bitwiseAnd) bitwiseOr = cv2.bitwise_or(rectangle,circle)
cv2.imshow("OR",bitwiseOr) bitwiseXor = cv2.bitwise_xor(rectangle,circle)
cv2.imshow("XOR",bitwiseXor) bitwiseNot = cv2.bitwise_not(rectangle)
cv2.imshow("Not",bitwiseNot)
cv2.waitKey(0)

如果一个给定的像素的值大于零,那么这个像素会被打开,如果它的值为零,它就会被关闭。按位功能在这些二进制条件下运行。

  • AND:当且仅当两个像素都大于零时,按位AND才为真。
  • OR:如果两个像素中的任何一个大于零,则按位“或”为真。
  • XOR 异或功能:当且仅当两个像素中的任何一个大于零时,按位XOR才为真,但不是两者都是。当且仅当两个像素一个大于0一个小于0时才为真,其他都为false
  • NOT 取反:倒置图像中的“开”和“关”像素。

# -*- coding: utf-8 -*-

import cv2
import numpy as np
global img
global point1, point2 lsPointsChoose = []
tpPointsChoose = [] pointsCount = 0
count = 0
pointsMax = 5 lsPointsChoose = []
tpPointsChoose = [] pointsCount = 0
count = 0
pointsMax = 5 def on_mouse(event, x, y, flags, param):
global img, point1, point2, count, pointsMax
global lsPointsChoose, tpPointsChoose # 存入选择的点
global pointsCount # 对鼠标按下的点计数
global init_img, ROI_bymouse_flag
init_img = img.copy() # 此行代码保证每次都重新再原图画 避免画多了 if event == cv2.EVENT_LBUTTONDOWN: # 左键点击 pointsCount = pointsCount + 1
# 为了保存绘制的区域,画的点稍晚清零
if(pointsCount == pointsMax + 1):
pointsCount = 0
tpPointsChoose = []
print('pointsCount:', pointsCount)
point1 = (x, y)
print (x, y)
# 画出点击的点
cv2.circle(init_img, point1, 10, (0, 255, 0), 5) # 将选取的点保存到list列表里
lsPointsChoose.append([x, y]) # 用于转化为darry 提取多边形ROI
tpPointsChoose.append((x, y)) # 用于画点 # 将鼠标选的点用直线链接起来
print(len(tpPointsChoose))
for i in range(len(tpPointsChoose) - 1):
cv2.line(init_img, tpPointsChoose[i], tpPointsChoose[i + 1], (0, 0, 255), 5)
# 点击到pointMax时可以提取去绘图
if(pointsCount == pointsMax):
# 绘制感兴趣区域
ROI_byMouse()
ROI_bymouse_flag = 1
lsPointsChoose = [] cv2.imshow('src', init_img) # 右键按下清除轨迹
if event == cv2.EVENT_RBUTTONDOWN: # 右键点击
print("right-mouse")
pointsCount = 0
tpPointsChoose = []
lsPointsChoose = []
print(len(tpPointsChoose))
for i in range(len(tpPointsChoose) - 1):
print('i', i)
cv2.line(init_img, tpPointsChoose[i], tpPointsChoose[i + 1], (0, 0, 255), 5)
cv2.imshow('src', init_img) def ROI_byMouse():
global src, ROI, ROI_flag, mask2
mask = np.zeros(img.shape, np.uint8)
pts = np.array([lsPointsChoose], np.int32) pts = pts.reshape((-1, 1, 2)) # -1代表剩下的维度自动计算 # 画多边形
mask = cv2.polylines(mask, [pts], True, (0, 255, 255))
# 填充多边形
mask2 = cv2.fillPoly(mask, [pts], (255, 255, 255))
cv2.imshow('mask', mask2)
ROI = cv2.bitwise_and(mask2, img)
cv2.imshow('ROI', ROI) def main():
global img, init_img, ROI
img = cv2.imread('1.jpg') # 图像预处理,设置其大小
height, width = img.shape[:2]
size = (int(width * 0.3), int(height * 0.3))
img = cv2.resize(img, size, interpolation=cv2.INTER_AREA)
ROI = img.copy()
cv2.namedWindow('src')
cv2.setMouseCallback('src', on_mouse)
cv2.imshow('src', img)
cv2.waitKey(0)
cv2.destroyAllWindows() if __name__ == '__main__':
main()

python cv2截取不规则区域图片的更多相关文章

  1. python selenium截取指定元素图片

    1.截取当前屏幕 @property def getImage(self): ''' 截取图片,并保存在images文件夹 :return: 无 ''' timestrmap = time.strft ...

  2. Python cv2 OpenCV 中传统图片格式与 base64 转换

    Base64是网络上最常见的用于传输8Bit字节码的编码方式之一,是一种基于64个可打印字符来表示二进制数据的方法.通过http传输图片常常将图片数据转换成base64之后再进行传输. Base64简 ...

  3. python cv2展示网络图片、图片编解码、及与base64转换

    从网络读取图像数据并展示 需要使用cv2.imdecode()函数,从指定的内存缓存中读取数据,并把数据转换(解码)成图像格式:主要用于从网络传输数据中恢复出图像. # -*- coding: utf ...

  4. python截图+百度ocr(图片识别)+ 百度翻译

    一直想用python做一个截图并自动翻译的工具,恰好最近有时间就在网上找了资料,根据资料以及自己的理解做了一个简单的截图翻译工具.整理一下并把代码放在github给大家参考.界面用python自带的G ...

  5. Python + OpenCV2 系列:2 - 图片操作

    这些相当于我的学习笔记,所以并没有很强的结构性和很全的介绍,请见谅. 1 读取.写入图像 下面是一个简短的载入图像.打印尺寸.转换格式及保存图像为.png的例子: # -*- coding: utf- ...

  6. C#切割指定区域图片操作

    使用winform制作了一个切割图片的功能,切一些固定大小的图片,比如头像.界面如图: 打开本地图片 OpenFileDialog opdialog = new OpenFileDialog(); o ...

  7. 【Unity游戏开发】UGUI不规则区域点击的实现

    一.简介 马三从上一家公司离职了,最近一直在出去面试,忙得很,所以这一篇博客拖到现在才写出来.马三在上家公司工作的时候,曾处理了一个UGUI不规则区域点击的问题,制作过程中也有一些收获和需要注意坑,因 ...

  8. C++ 中利用 Opencv 得到不规则的ROI 区域(已知不规则区域)

    因为需要,之前写了一个利用mask 得到不规则ROI 区域的程序. 现在需要修改,发现自己都看不懂是怎么做的了.. 所以把它整理下来. 首先利用 鼠标可以得到 你想要的不规则区域的 顶点信息.具体这里 ...

  9. UGUI实现不规则区域点击响应

    UGUI实现不规则区域点击响应 前言 大家吼啊!最近工作上事情特别多,没怎么打理博客.今天无意打开cnblog才想起该写点东西了.今天给大家讲一个Unity中不规则区域点击响应的实现方法,使用UGUI ...

随机推荐

  1. Python学习笔记—条件判断和循环

    条件判断 计算机之所以能做很多自动化的任务,因为它可以自己做条件判断. 比如,输入用户年龄,根据年龄打印不同的内容,在Python程序中,用if语句实现: age = 20 if age >= ...

  2. python 装饰器 (test = submit(test))

    两层的装饰器,这里对于register不需要进行输入 usename, passwd = 'alex', 'abc123' def register(func): def wrapper(*args, ...

  3. flask_sqlalchemy的session线程安全源码解读

    flask_sqlalchemy是如何在多线程中对数据库操作不相互影响 数据库操作隔离 结论:使用scoped_session实现数据库操作隔离 flask的api.route()接收一个请求,就会创 ...

  4. 在VS CODE中调试Angular代码

    Chrome Dev Tools 可以调试js程序,但是可能需要和源码之间来回切换. 如果是使用VS CODE来开发Angular,可以直接在VS CODE中调试. 按照如下的步骤即可: 第一步,  ...

  5. java解析和组装json以及一些方法的理解

    这是一个json格式的字符串 第一种情况(简单格式) String result = "{\"name\":\"小明\",\"age\&qu ...

  6. spring boot starter是什么

    参考自:https://www.cnblogs.com/EasonJim/p/7615801.html Spring Boot中Starter是什么 比如我们要在Spring Boot中引入Web M ...

  7. delphi 权限控制(delphi TActionList方案)

    在软件开发中,为软件加入权限控制功能,使不同的用户有不同的使用权限,是非常重要的一项功能,由其在开发数据库方面的应用,这项功能更为重要.但是,要为一个应用加入全面的权限控制功能,又怎样实现呢?大家知道 ...

  8. jdk1.8-ArrayList源码分析

    一:idea可以自动生成UML类图,ctrl+alt+u ArrayList类图 我没们看下类的继承关系 ) { ) { ) { )) )) newCapacity = minCapacity) ne ...

  9. .net core cookie滑动过期设置

    HttpContext.SignInAsync( CookieAuthenticationDefaults.AuthenticationScheme, userPrincipal, new Authe ...

  10. PJzhang:python基础入门的7个疗程-three

    猫宁!!! 参考链接:易灵微课-21天轻松掌握零基础python入门必修课-售价29元人民币 https://www.liaoxuefeng.com/wiki/1016959663602400 第七天 ...