/*
HDU 6057 - Kanade's convolution [ FWT ] | 2017 Multi-University Training Contest 3
题意:
给定两个序列 A[0...2^m-1], B[0...2^m-1]
求 C[0...2^m-1] ,满足:
C[k] = ∑[i&j==k] A[i^j] * B[i|j]
m <= 19
分析:
看C[k]的形式与集合卷积的形式接近,故转化式子时主要向普通的集合卷积式方向靠
与三种位运算都相关的结论是 : i^j + i&j = i|j
设 x = i^j, y = i|j,则显然 k = y-x,且 k 与 x 互成关于 y 的补集,即 k = x^y 再来关心给定(x,y),符合 x = i^j, y = i|j的(i,j)对的数目
注意到相同的位 i&j 是确定的,x = i^j 是i和j不同的位的数目,这部分谁是 0 谁是 1 不固定
故(i,j)对的数目为 2^bits(x) 此时重写原式: C[k] = ∑ [k == x^y] [k == y-x] A[x]*2^bits(x) * B[y] 设 A'[x] = A[x]*2^bits(x)
由于 [k == x^y],第二个条件 [k == y-x] 等价于 bits(k) == bits(y) - bits(x)
C[k] = ∑ [k == x^y] [bits(k) == bits(x) - bits(y)] A'[x] * B[y] 将 A,B,C三个数组按 bits 划分:
C[bits(k)][k] = ∑ [k == x^y] A[bits(x)][x]*2^bits(x) * B[bits(y)][y] 最后按不同的维度(bits)做 FWT即可
*/
#include <bits/stdc++.h>
using namespace std;
const int MOD = 998244353;
const int N = 1<<20;
int rev2;
long long inv( long long a , long long m)
{
if (a == 1) return 1;
return inv(m%a, m) * (m - m/a) % m;
}
void FWT(int a[], int n) {
for (int d = 1; d < n; d <<= 1)
for (int m = d<<1, i = 0; i < n; i += m)
for (int j = 0; j < d; j++)
{
int x = a[i+j], y = a[i+j+d];
a[i+j] = (x+y) % MOD;
a[i+j+d] = (x-y+MOD) % MOD;
}
}
void UFWT(int a[], int n) {
for (int d = 1; d < n; d <<= 1)
for (int m = d<<1, i = 0; i < n; i += m)
for (int j = 0; j < d; j++)
{
int x = a[i+j], y = a[i+j+d];
a[i+j] = 1LL*(x+y) * rev2 % MOD;
a[i+j+d] = (1LL*(x-y)*rev2 % MOD + MOD) % MOD;
}
}
int a[20][N], b[20][N], c[20][N];
int bits[N];
int m, n;
void init()
{
rev2 = inv(2, MOD);
bits[0] = 0;
for (int i = 1; i < N; i++) bits[i] = bits[i>>1] + (i&1);
}
int main()
{
init();
scanf("%d", &m);
n = 1<<m;
for (int i = 0; i < n; i++)
{
int x; scanf("%d", &x);
a[bits[i]][i] = 1LL*x * (1<<bits[i]) % MOD;
}
for (int i = 0; i < n; i++)
{
int x; scanf("%d", &x);
b[bits[i]][i] = x;
}
for (int i = 0; i <= m; i++) FWT(a[i], n);
for (int i = 0; i <= m; i++) FWT(b[i], n);
for (int i = 0; i <= m; i++)
for (int j = i; j <= m; j++)
for (int k = 0; k < n; k++)
{
c[j-i][k] = (c[j-i][k] + 1LL*a[i][k] * b[j][k] % MOD) % MOD;
}
for (int i = 0; i <= m; i++) UFWT(c[i], n);
long long ans = 0, base = 1;
for (int i = 0; i < n; i++)
{
ans = ( ans + c[bits[i]][i] * base % MOD ) % MOD;
base = base * 1526 % MOD;
}
printf("%lld\n", ans);
}

  

HDU 6057 - Kanade's convolution | 2017 Multi-University Training Contest 3的更多相关文章

  1. HDU 6057 Kanade's convolution(FWT)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6057 [题目大意] 有 C[k]=∑_(i&j=k)A[i^j]*B[i|j] 求 Ans ...

  2. HDU 6057 Kanade's convolution

    题目链接:HDU-6057 题意: 思路:先按照官方题解推导出下面的式子: 现在唯一的问题就是怎么解决[bit(x)-bit(y)=bit(k)]的问题. 我们定义\( F(A,k)_{i}=\lef ...

  3. hdu 6057 Kanade's convolution(子集卷积)

    题解: 然后就是接下来如何fwt 也就是如何处理bit(x) - bit(y) = bit(k)这个条件. 其实就是子集卷积. 把bit(x)和bit(y)划分成两个集合,然后就是子集卷积的形式. 这 ...

  4. HDU 6059 - Kanade's trio | 2017 Multi-University Training Contest 3

    思路来自题解(看着题解和标程瞎吉尔比划了半天) /* HDU 6059 - Kanade's trio [ 字典树 ]  |  2017 Multi-University Training Conte ...

  5. HDU 6058 - Kanade's sum | 2017 Multi-University Training Contest 3

    /* HDU 6058 - Kanade's sum [ 思维,链表 ] | 2017 Multi-University Training Contest 3 题意: 给出排列 a[N],求所有区间的 ...

  6. HDU 6162 - Ch’s gift | 2017 ZJUT Multi-University Training 9

    /* HDU 6162 - Ch’s gift [ LCA,线段树 ] | 2017 ZJUT Multi-University Training 9 题意: N节点的树,Q组询问 每次询问s,t两节 ...

  7. HDU 6058 Kanade's sum —— 2017 Multi-University Training 3

    Kanade's sum Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

  8. 2017 Wuhan University Programming Contest (Online Round) Lost in WHU 矩阵快速幂 一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开。

    /** 题目:Lost in WHU 链接:https://oj.ejq.me/problem/26 题意:一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开. ...

  9. 2017 Wuhan University Programming Contest (Online Round) C. Divide by Six 分析+模拟

    /** 题目:C. Divide by Six 链接:https://oj.ejq.me/problem/24 题意:给定一个数,这个数位数达到1e5,可能存在前导0.问为了使这个数是6的倍数,且没有 ...

随机推荐

  1. Pycharm 误删文件夹

    在Linux下操作时误删除了Pycharm项目中的文件夹,打开垃圾桶,居然找不到,立马上网查Linux下怎么恢复文件, 冷静一下,不是还有个Ctrl + Z吗,对着Pycharm 文件浏览器 按一下, ...

  2. mac 环境下mysql登陆失败问题Access denied for user 'root'@'localhost' (using passwordYES)

    1.停止mysql服务 sudo /usr/local/mysql/support-files/mysql.server stop 2.进入mysql的bin目录 cd /usr/local/mysq ...

  3. eclipse scala Could not reserve enough space for object heap

    [学习笔记] 防盗版实名手机尾号:73203 Could not reserve enough space for object heap 解决方法:下面的缩写中:一个是memory max(Xmx) ...

  4. Java--垃圾回收【转载】

    一:垃圾回收机制的意义 java 语言中一个显著的特点就是引入了java回收机制,可以有效的防止内存泄露,有效的使用空闲的内存. 内存泄露:指该内存空间使用完毕后未回收,在不涉及复杂数据结构的一般情况 ...

  5. Python re 模块findall() 函数返回值展现方式详解

    findall 函数: 在字符串中找到正则表达式所匹配的所有子串,并返回一个列表,如果没有找到匹配的,则返回空列表. 注意: match 和 search 是匹配一次 findall 匹配所有,mat ...

  6. 5.Linux常用排查命令

    可以使用一下命令查使用内存最多的10个线程     ps aux | sort -k4nr | head -n 10   可以使用一下命令查使用CPU最多的10个线程     ps aux | sor ...

  7. Ansible 自动化工具入门

    Ansible 配置 Ansible 简单管理 下面的小实验,我们将采用以下的IP地址规划,请自行配置好. [实验环境] [状态] [主机列表] [python版本] 控制机 192.168.1.10 ...

  8. Rikka with Competition hdu 6095

    签到题目,排序然后按序清理掉一定会输的结果就可以. ac代码: #include <iostream> #include <cstdio> #include <cstri ...

  9. ReactNative 踩坑笔记

    1.fatal error: 'React/RCTBridgeDelegate.h' file not found 这个问题是应为没有安装cocoaPods 所以无法安装ios需要的第三方库.安装co ...

  10. Java优化高性能高并发+高并发程序设计视频教程

    转自:https://www.cnblogs.com/ajianku/p/10236573.html 第1章 课程介绍及项目框架搭建1-1 Java高并发商城秒杀优化导学1-2 项目环境搭建(Ecli ...