等比数列那里忘判项数等于 $1$ 的情况了.

Code:

#include <cstdio>
#include <vector>
#include <algorithm>
#define mod 9901
#define N 50000002
#define ll long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
ll qpow(ll base,ll k)
{
ll tmp=1;
for(;k;base=base*base%mod,k>>=1)if(k&1) tmp=tmp*base%mod;
return tmp;
}
ll inv(ll k)
{
return qpow(k,mod-2);
}
ll calc(ll a,ll b,ll k)
{
if(b==1) return a;
return (qpow(b,k+1)-1+mod)%mod*inv(b-1)%mod;
}
struct Node
{
int prime,p;
Node(int prime=0,int p=0):prime(prime),p(p){}
};
vector<Node>v;
int tot;
bool vis[N];
int prime[4000000];
void init()
{
int i,j;
for(i=2;i<N;++i)
{
if(!vis[i]) prime[++tot]=i;
for(j=1;j<=tot&&i*prime[j]<N;++j)
{
vis[i*prime[j]]=1;
if(i%prime[j]==0) break;
}
}
}
int main()
{
init();
// setIO("input");
int i,j,AA,B,h;
scanf("%d%d",&AA,&B),h=AA;
for(i=1;i<=tot;++i)
if(h%prime[i]==0)
{
int cc=0;
for(;h%prime[i]==0;h/=prime[i]) ++cc;
v.push_back(Node(prime[i],cc));
}
ll re=1;
for(i=0;i<v.size();++i)
{
int p=v[i].p;
ll tmp=0,A=1;
for(j=1;j<=p;++j) A=A*v[i].prime%mod,tmp=(tmp+A)%mod;
tmp=tmp*calc(1,A,B-1)%mod;
re=re*(tmp+1)%mod;
}
printf("%lld\n",re);
return 0;
}

  

luogu 1593 因子和 约数+线性筛的更多相关文章

  1. luogu P3383 【模板】线性筛素数

    题目描述 如题,给定一个范围N,你需要处理M个某数字是否为质数的询问(每个数字均在范围1-N内) 输入输出格式 输入格式: 第一行包含两个正整数N.M,分别表示查询的范围和查询的个数. 接下来M行每行 ...

  2. luogu 3383【模板】线性筛素数

    我太菜了 %韩神 #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib&g ...

  3. 积性函数&线性筛&欧拉函数&莫比乌斯函数&因数个数&约数个数和

    只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 ...

  4. [Ahoi2005]COMMON 约数研究 【欧拉线性筛的应用】

    1968: [Ahoi2005]COMMON 约数研究 Time Limit: 1 Sec  Memory Limit: 64 MB Submit: 2939  Solved: 2169 [Submi ...

  5. luogu 3708 koishi的数学题 递推 线性筛

    题目链接 题意 输入一个整数\(n\)\((n\leq 1e6)\),设\(f(x)=\sum_{i=1}^n x\mod i\),你需要输出\(f(1),f(2)...,f(n)\). 输入输出格式 ...

  6. 约数个数求和+线性筛约数——bzoj3994

    这题首先要会线性筛约数个数,并求出前缀和 bool vis[maxn]; int mm,mu[maxn],prime[maxn],num[maxn],sum[maxn],d[maxn],sum1[ma ...

  7. Educational Codeforces Round 89 (Rated for Div. 2)D. Two Divisors 线性筛质因子

    题目链接:D:Two Divisors 题意: 给你n个数,对于每一个数vi,你需要找出来它的两个因子d1,d2.这两个因子要保证gcd(d1+d2,vi)==1.输出的时候输出两行,第一行输出每一个 ...

  8. [Luogu]A%BProblem——线性筛素数与前缀和

    题目描述 题目背景 题目名称是吸引你点进来的[你怎么知道的] 实际上该题还是很水的[有种不祥的预感..] 题目描述 区间质数个数 输入输出格式 输入格式: 一行两个整数 询问次数n,范围m接下来n行, ...

  9. Luogu 4917 天守阁的地板(莫比乌斯反演+线性筛)

    既然已经学傻了,这个题当然是上反演辣. 对于求积的式子,考虑把[gcd=1]放到指数上.一通套路后可以得到∏D∏d∏i∏j (ijd2)μ(d) (D=1~n,d|D,i,j=1~n/D). 冷静分析 ...

随机推荐

  1. sqlalchemy定义mysql时间戳字段

    update_time = Column(TIMESTAMP, nullable=False, comment='更新时间戳', server_default=text('CURRENT_TIMEST ...

  2. 【xlwings】 wps 和 office 的excel creat_sheet区别

    最近在学习 xlwings,参考学习的网址:https://www.jianshu.com/p/b534e0d465f7 写得很棒,学到了很多. 在新建sheet表单, 发现一个问题. import ...

  3. Docker——入门

    虚拟化最大区别:虚拟化技术元件,资源申请调度到其他硬件服务器: Docker是一个开源得应用容器引擎,让开发者可以打包他们得应用以及依赖包到一共可移植得容器中,然后发布到任何流行得linux机器上,也 ...

  4. 牛客 132C 简单瞎搞题 (bitset)

    大意: 给定序列$a$的第$i$个元素的取值范围$[L_i,R_i]$, 求$a$的平方和的种类数. 用bitset优化, 复杂度$O(\frac{n^5}{\omega})$ #include &l ...

  5. Laravel 表单验证创建“表单请求”实现自定义请求类

    按照文档创建表单请求自定义类以后,调用总是403页面,咨询大佬说: public function authorize() { // 在表单验证类的这个方法这里要返回true,默认返回false,这个 ...

  6. 4.图片左轮播图(swiper)

    一.html部分 二.js部分 三.源代码部分 <body> <div id="box"> <img src="imges/111.jpg& ...

  7. 不再显示广告案例(php操作cookie)

    1,页面简单结构搭建 ad.html <!DOCTYPE html> <html lang="en"> <head> <meta char ...

  8. day07 类

    一.目录 1.模块 2.包 3.isinstance issubclass type 4.方法和函数 5.反射 6.约束 7.继承 8.特殊成员 9.异常处理 补充知识点 10.hashlib模块 1 ...

  9. Lua入门记录

    学习资料 Lua入门和Lua高阶章节 Lua中文文档 阅读笔记,只是记录了知识点和一些注意点,详细的看上面提供的学习资料链接 Lua 基础数据类型 nil(空) boolean(布尔) Lua 中 n ...

  10. redis主从+ 哨兵模式(sentinel)+漂移VIP实现高可用系统

    原文:https://www.jianshu.com/p/c2ab606b00b7 客户端程序 客户端程序(如PHP程序)连接redis时需要ip和port,但redis-server进行故障转移时, ...