题目链接

问题分析

奇奇怪怪的题。。。

首先思路达成一致,从大到小一步一步确定位置。

我们一边分析,一边讲算法。

112123123412345123456123456712345678123456789123456789101234567891011123456789101112

假设我们现在要找的是这个串中的倒数第二个位置(就是1),我们可以这样做:

首先,我们想象着把串分开,变成

1
12
123
1234
12345
123456
1234567
12345678
123456789
12345678910
1234567891011
123456789101112

由于我们发现, 最后一个数字 位数相同 的串 的长度 是一个等差数列,可以方便地求得数列和。所以我们可以枚举 所求位置所在串 的 最后一个数字 的 位数。

在这个例子中,我们先枚举 最后一个数字 的 位数 为\(1\),可以算得这样的串的总长是 \((1+9)*9/2\)。发现不到所求位置,于是把这些串扔掉,顺便所求位置减\(45\)。

12345678910
1234567891011
123456789101112

然后枚举 最后一个数字 的 位数 为\(2\),可以算得这样串的总长是 \((11+(9+2*90))*90/2\)大于所求位置。

所以我们知道了 所求位置 所在串 的 最后一个数 的 位数 是 \(2\)。

然后同样的,根据这个等差数列,我们可以二分求得 所求位置 所在串 的 最后一个数 是多少。

这个例子中,最后锁定在串

123456789101112

然后……

我们可以重复上面的操作,把串分成

1 2 3 4 5 6 7 8 9 10 11 12

然后重复上面的第一步操作确定 所求位置 所在数 的 位数。只不过这次长度数列不再是等差数列,而是值等于数字位数的常数列。

在这个例子中,我们删掉了长度为\(1\)的,留下

10 11 12

然后可以直接算出 所求位置在 12 里。然后问题就解决了!

参考程序

#include <bits/stdc++.h>
#define LL long long
using namespace std; void Work() {
LL n;
scanf( "%lld", &n );
LL LastLen = 0, Len, Count;
for( Len = 1; ; ++Len ) {
Count = 9;
for( LL i = 1; i < Len; ++i )
Count = Count * 10;
LL Sum = ( LastLen + Len + LastLen + Count * Len ) * Count / 2;
if( n <= Sum ) break;
n -= Sum;
LastLen += Count * Len;
}
LL Left = 1, Right = Count, Mid, Ans;
while( Left <= Right ) {
Mid = ( Left + Right ) >> 1;
LL Sum = ( LastLen + Len + LastLen + Mid * Len ) * Mid / 2;
if( Sum >= n ) {
Ans = Mid;
Right = Mid - 1;
} else Left = Mid + 1;
}
--Ans;
n -= ( LastLen + Len + LastLen + Ans * Len ) * Ans / 2;
++Ans;
for( Len = 1; ; ++Len ) {
Count = 9;
for( LL i = 1; i < Len; ++i )
Count = Count * 10;
LL Sum = Count * Len;
if( Sum >= n ) break;
n -= Sum;
}
LL Num = ( n + Len - 1 ) / Len;
n = n - ( Num - 1 ) * Len;
LL T = 1;
for( LL i = 1; i < Len; ++i ) T = T * 10;
Num = T + Num - 1;
T = Len - n + 1;
for( LL i = 1; i < T; ++i ) Num = Num / 10;
printf( "%lld\n", Num % 10 );
return;
} int main() {
LL Query;
scanf( "%lld", &Query );
for( LL i = 1; i <= Query; ++i ) Work();
return 0;
}

CF1216E Numerical Sequence的更多相关文章

  1. [CF1216E] Numerical Sequence hard version

    题目 The only difference between the easy and the hard versions is the maximum value of k. You are giv ...

  2. Numerical Sequence (easy version)

    http://codeforces.com/problemset/problem/1216/E1 E1. Numerical Sequence (easy version) time limit pe ...

  3. cf1216E2 Numerical Sequence (hard version)(思维)

    cf1216E2 Numerical Sequence (hard version) 题目大意 一个无限长的数字序列,其组成为\(1 1 2 1 2 3 1.......1 2 ... n...\), ...

  4. Numerical Sequence (Hard vision) 题解

    The only difference between the easy and the hard versions is the maximum value of \(k\). You are gi ...

  5. cf1216E2 Numerical Sequence (hard version) 二分查找、思维题

    题目描述 The only difference between the easy and the hard versions is the maximum value of k. You are g ...

  6. Numerical Sequence(hard version),两次二分

    题目: 题意: 已知一个序列: 112123123412345123456123456712345678123456789123456789101234567891011... 求这个序列第k个数是多 ...

  7. 【二分】CF Round #587 (Div. 3)E2 Numerical Sequence (hard version)

    题目大意 有一个无限长的数字序列,其组成为1 1 2 1 2 3 1.......1 2 ... n...,即重复的1~1,1~2....1~n,给你一个\(k\),求第\(k(k<=10^{1 ...

  8. EAPOL 协议

    EAPOL 协议 一.基本概念 EAPOL 的全称为 Extensible Authentication Protocol Over LAN,即 EAP Over Lan,也即基于局域网的扩展认证协议 ...

  9. [转载]John Burkardt搜集的FORTRAN源代码

    Over the years, I have collected, modified, adapted, adopted or created a number of software package ...

随机推荐

  1. CAS实现逻辑(JWT)

    由于没有获取正规做CAS的流程,这里根据网上的资料,写了一个自己觉得还可以的方案流程,留着备用 名称介绍: token:用于验证请求是否合法 refreshToken:当token失效后,客户端发送t ...

  2. Zend 3.3.0安装 ZendOptimizer 3.3.0 for Windows 稳定版 下载

    用的某php网站系统今天打开时乱码了(zend 200407...),但phpmyadmin能正常使用: 搜索下,重新安装zend可以解决,系统上原来的版本是Zend 3.3.0:下了个,安装后果然把 ...

  3. Web框架理解

    目录 1.web框架理解     2.http工作原理     3.通过函数实现浏览器和服务端通信案例     4.服务器程序和引用程序理解     5.jinja2渲染模板案例     6.Djan ...

  4. 最新Cocoapods 安装及使用

    1.移除现有Ruby默认源 gem sources --remove https://rubygems.org/ 2.使用新的源 gem sources -a https://ruby.taobao. ...

  5. Delphi最新的路线图

    没想到,官方又发布了一个路线图,同上一个相比,多了10.3.3版本,而其中,最主要的iOS 13支持,即下半年发布的新的苹果系统,再一个就是android 64的delphi支持!年底前发布,够官忙伙 ...

  6. 用NetHttpClient执行Post操作遇到的问题

    最近在做接口的调试,用NetHttpClient来进行相关操作.部分数据是用get方法来操作的,没有问题,但有个数据是用Post来操作的,始终报错,用了抓包分析工具发现没有发送数据出去.但找不出代码的 ...

  7. multiple类型的select option在django后台如何取值

    之前前端的select都是单选类型,在新的场景中允许用户选择多个条件, 前端的代码如下: <form action="{% url 'info:result-list' %}" ...

  8. Win7系统打开防火墙出现0x6D9错误的解决方法

    防火墙是Windows系统内的一道屏障,开启防火墙可以对系统起到一定的保护作用,可以说非常重要.但是有些Win7系统用户在开启防火墙时会被系统提示出现0x6D9的错误代码,从而不能打开防火墙. 当我们 ...

  9. 需求分析&系统设计

    这个作业属于哪个课程 课程链接 这个作业要求在哪里 作业要求 团队名称 朋友 代打了解一下 这个作业的目标 需求分析&系统设计 一.团队成员的姓名学号列表 学号 姓名 特长 061126 黄天 ...

  10. MFC Bitmap::FromBITMAPINFO返回空问题

    领导临时给了一个任务,项目上的一个问题,就是FromBITMAPINFO不成功,之前也没有弄过MFC的东西,但领导让干就干吧.咱也不知道怎么回事,咱也不敢问. 上来直接度娘,试过各种办法,都没与解决, ...