主席树。

推下式子,发现点的深度和好算,lca深度和不好算。

lca深度之和有个套路:先给a到根路径+1,再算b到根的和。

如果可以离线,即LNOI的LCA。本题强制在线,可持久化。

由于区间修改,使用标记永久化。

注意修改要复制全,关于和的修改有些细节:

int xiugai(int i, int j, int l, int r, int L, int R) {
if (R <= l || r <= L) return i;
int rt = ++sl;
cl[rt] = cl[i]; cr[rt] = cr[i];
he[rt] = he[i]; ld[rt] = ld[i];
if (L <= l && r <= R) {
he[rt] += su[j];
ld[rt] = ld[i] + 1;
return rt;
}
int m = (l + r) >> 1;
he[rt] -= (he[cl[rt]] + he[cr[rt]]);
cl[rt] = xiugai(cl[rt], j << 1, l, m, L, R);
cr[rt] = xiugai(cr[rt], (j << 1) | 1, m, r, L, R);
he[rt] += (he[cl[rt]] + he[cr[rt]]);
return rt;
}

正常空间需要4倍mlogn:修改区间拆分2倍,上传2倍。应该跑不满。

然而本题是树剖,跑不满,所以开到\(2.5*10^7\)就行。

代码:

#include <stdio.h>
#include <stdlib.h>
#define M 20000010
#define ll long long
#define re register
inline int max(int a, int b) {
return a > b ? a: b;
}
inline int min(int a, int b) {
return a < b ? a: b;
}
inline int read() {
re char ch;
while ((ch = getchar()) == '\n' || ch == ' ' || ch == '\r');
re int jg = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') jg = (jg << 3) + (jg << 1) + ch - '0';
return jg;
}
int fr[150010],ne[300010],v[300010],w[300010],bs = 0;
void addb(int a, int b, int c) {
v[bs] = b;
w[bs] = c;
ne[bs] = fr[a];
fr[a] = bs++;
}
int fa[150010],son[150010],sd[150010],cd[150010],jl[150010];
int dfs1(int u, int f) {
fa[u] = f;
sd[u] = sd[f] + 1;
jl[u] = jl[f] + cd[u];
int ma = -1,he = 1;
son[u] = -1;
for (int i = fr[u]; i != -1; i = ne[i]) {
if (v[i] == f) continue;
cd[v[i]] = w[i];
int rt = dfs1(v[i], u);
he += rt;
if (rt > ma) {
ma = rt;
son[u] = v[i];
}
}
return he;
}
int top[150010],bh[150010],tm = 0;
void dfs2(int u, int f, int tp) {
top[u] = tp;
bh[u] = ++tm;
if (son[u] == -1) return;
dfs2(son[u], u, tp);
for (int i = fr[u]; i != -1; i = ne[i]) {
if (v[i] != f && v[i] != son[u]) dfs2(v[i], u, v[i]);
}
}
int js[150010],cl[M],cr[M],ld[M],sl = 0,su[600010];
ll he[M],jh[150010];
void jianshu(int i, int l, int r) {
if (l + 1 == r) {
su[i] = js[l];
return;
}
int m = (l + r) >> 1;
jianshu(i << 1, l, m);
jianshu((i << 1) | 1, m, r);
su[i] = su[i << 1] + su[(i << 1) | 1];
}
int jianshu(int l, int r) {
int rt = ++sl;
he[rt] = ld[rt] = 0;
if (l + 1 == r) return rt;
int m = (l + r) >> 1;
cl[rt] = jianshu(l, m);
cr[rt] = jianshu(m, r);
return rt;
}
int build(int n) {
for (int i = 1; i <= n; i++) js[bh[i]] = cd[i];
jianshu(1, 1, n + 1);
return jianshu(1, n + 1);
}
int xiugai(int i, int j, int l, int r, int L, int R) {
if (R <= l || r <= L) return i;
int rt = ++sl;
cl[rt] = cl[i]; cr[rt] = cr[i];
he[rt] = he[i]; ld[rt] = ld[i];
if (L <= l && r <= R) {
he[rt] += su[j];
ld[rt] = ld[i] + 1;
return rt;
}
int m = (l + r) >> 1;
he[rt] -= (he[cl[rt]] + he[cr[rt]]);
cl[rt] = xiugai(cl[rt], j << 1, l, m, L, R);
cr[rt] = xiugai(cr[rt], (j << 1) | 1, m, r, L, R);
he[rt] += (he[cl[rt]] + he[cr[rt]]);
return rt;
}
ll getsum(int i, int j, int l, int r, int L, int R, int lh) {
if (R <= l || r <= L) return 0;
if (L <= l && r <= R) return 1ll * lh * su[j] + he[i];
int m = (l + r) >> 1;
return getsum(cl[i], j << 1, l, m, L, R, lh + ld[i]) + getsum(cr[i], (j << 1) | 1, m, r, L, R, lh + ld[i]);
}
int xiugai(int od, int x, int n) {
while (x != 0) {
od = xiugai(od, 1, 1, n + 1, bh[top[x]], bh[x] + 1);
x = fa[top[x]];
}
return od;
}
ll getsum(int ro, int x, int n) {
ll jg = 0;
while (x != 0) {
jg += getsum(ro, 1, 1, n + 1, bh[top[x]], bh[x] + 1, 0);
x = fa[top[x]];
}
return jg;
}
struct SPx {
int z, i;
};
SPx px[150010];
int cmp(const void * a, const void * b) {
return ((SPx * ) a) ->z - ((SPx * ) b) ->z;
}
int find(int n, int x) {
int l = 0, r = n;
while (l < r) {
int m = (l + r + 1) >> 1;
if (px[m].z <= x) l = m;
else r = m - 1;
}
return l;
}
int gen[150010];
ll getans(int L, int R, int u, int n) {
int r = find(n, R);
int l = find(n, L - 1);
ll lc = getsum(gen[r], u, n) - getsum(gen[l], u, n);
ll jg = 1ll * (r - l) * jl[u] + (jh[r] - jh[l]) - lc * 2;
return jg;
}
void insert(int i, int n) {
gen[i] = xiugai(gen[i - 1], px[i].i, n);
jh[i] = jh[i - 1] + jl[px[i].i];
}
int main() {
int n, q, m;
ll la = 0;
scanf("%d%d%d", &n, &q, &m);
for (int i = 1; i <= n; i++) {
fr[i] = -1;
px[i].i = i;
px[i].z = read();
}
qsort(px + 1, n, sizeof(SPx), cmp);
for (int i = 0; i < n - 1; i++) {
int a, b, c;
a = read();
b = read();
c = read();
addb(a, b, c);
addb(b, a, c);
}
dfs1(1, 0);
dfs2(1, 0, 1);
gen[0] = build(n);
for (int i = 1; i <= n; i++) insert(i, n);
for (int i = 0; i < q; i++) {
int u, a, b;
u = read();
a = read();
b = read();
int L = min((a + la) % m, (b + la) % m);
int R = max((a + la) % m, (b + la) % m);
la = getans(L, R, u, n);
printf("%lld\n", la);
}
return 0;
}

[HNOI2015]开店 简要题解的更多相关文章

  1. A · F · O —— JLOI2018翻车记(附Day1简要题解)

    JLOI2018翻车记 并不知道该怎么写... 算了还是按照标准剧情来吧 这应该是一篇写得非常差的流水账... 2018.04.04 Day -1 省选前在机房的最后一天. 压力并不是很大,毕竟联赛 ...

  2. 【BZOJ4012】[HNOI2015]开店 动态树分治+二分

    [BZOJ4012][HNOI2015]开店 Description 风见幽香有一个好朋友叫八云紫,她们经常一起看星星看月亮从诗词歌赋谈到人生哲学.最近她们灵机一动,打算在幻想乡开一家小店来做生意赚点 ...

  3. HNOI2015 Day 2题解

    昨天做了HNOI day 2,感觉好像还是可做的,想当年什么splay还是高级算法,现在点剖什么就老考了简直丧病,虽然第二题还没写那就先当下嘴巴选手吧= = T1:[HNOI2015]落忆枫音 描述: ...

  4. Noip 2014酱油记+简要题解

    好吧,day2T1把d默认为1也是醉了,现在只能期待数据弱然后怒卡一等线吧QAQ Day0 第一次下午出发啊真是不错,才2小时左右就到了233,在车上把sao和fate补掉就到了= = 然后到宾馆之后 ...

  5. Tsinghua 2018 DSA PA2简要题解

    反正没时间写,先把简要题解(嘴巴A题)都给他写了记录一下. upd:任务倒是完成了,我也自闭了. CST2018 2-1 Meteorites: 乘法版的石子合并,堆 + 高精度. 写起来有点烦貌似. ...

  6. Codeforces 863 简要题解

    文章目录 A题 B题 C题 D题 E题 F题 G题 传送门 简要题解?因为最后一题太毒不想写了所以其实是部分题解... A题 传送门 题意简述:给你一个数,问你能不能通过加前导000使其成为一个回文数 ...

  7. HNOI2018简要题解

    HNOI2018简要题解 D1T1 寻宝游戏 题意 某大学每年都会有一次 Mystery Hunt 的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得这一年出题的机会. 作为 ...

  8. JXOI2018简要题解

    JXOI2018简要题解 T1 排序问题 题意 九条可怜是一个热爱思考的女孩子. 九条可怜最近正在研究各种排序的性质,她发现了一种很有趣的排序方法: Gobo sort ! Gobo sort 的算法 ...

  9. BJOI2018简要题解

    BJOI2018简要题解 D1T1 二进制 题意 pupil 发现对于一个十进制数,无论怎么将其的数字重新排列,均不影响其是不是 \(3\) 的倍数.他想研究对于二进制,是否也有类似的性质. 于是他生 ...

随机推荐

  1. 开源定时任务框架Quartz(二)

    概述 上一篇文章完成了第一个Quartz程序的编写,这篇从Quartz中的几个重要对象来更深一层认识Quartz框架. Job和JobDetail Job是Quartz中的一个接口,接口下只有exec ...

  2. Erlang:[笔记一,构建工具rebar之编译]

    Rebar概述 Rebar是一款Erlang构建工具,使用它可以方便的编译,测试erlang程序和打包erlang发行版本.Rebar其实是一个独立的erlang脚本,默认情况下,Rebar会按照Er ...

  3. 消息队列ActiveMQ

    什么是ActiveMQ ActiveMQ 是Apache出品,最流行的,能力强劲的开源消息总线.ActiveMQ 是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Provider实现,尽管 ...

  4. 在Yii2中集成Markdown编辑器

    安装命令: composer require ijackua/yii2-lepture-markdown-editor-widget:dev-master 可能会遇到的问题 如果在下载依赖包的过程中出 ...

  5. SAS学习笔记21 散点图、条形图

  6. DRF框架中链表数据通过ModelSerializer深度查询方法汇总

    DRF框架中链表数据通过ModelSerializer深度查询方法汇总 一.准备测试和理解准备 创建类 class Test1(models.Model): id = models.IntegerFi ...

  7. 【web】使用ionic搭建移动端项目 icon-radio 标签在ios下全部选中的问题

    这块css 导致的问题 .disable-pointer-events { pointer-events: none; }

  8. springboot2.0介绍1

    SpringBoot 一. Spring介绍 1.1.SpringBoot简介 在您第1次接触和学习Spring框架的时候,是否因为其繁杂的配置而退却了?在你第n次使用Spring框架的时候,是否觉得 ...

  9. Array + two points leetcode.18 - 4Sum

    题面 Given an array nums of n integers and an integer target, are there elements a, b, c, and d in num ...

  10. 7.Java集合-Arrays类实现原理及源码分析

    Java集合---Arrays类源码解析  转自:http://www.cnblogs.com/ITtangtang/p/3948765.html 一.Arrays.sort()数组排序 Java A ...