记录一些python内置函数
整理一些内置函数,平时用得比较少,但是时不时遇上,记录一下吧(嘻嘻(●'◡'●))

1.help()
查看模块or函数的帮助文档
help(pandas) #模块
Help on package pandas:
NAME
pandas
DESCRIPTION
pandas - a powerful data analysis and manipulation library for Python
=====================================================================
**pandas** is a Python package providing fast, flexible, and expressive data
structures designed to make working with "relational" or "labeled" data both
easy and intuitive. It aims to be the fundamental high-level building block for
doing practical, **real world** data analysis in Python. Additionally, it has
the broader goal of becoming **the most powerful and flexible open source data
analysis / manipulation tool available in any language**. It is already well on
its way toward this goal.
Main Features
-------------
Here are just a few of the things that pandas does well:
- Easy handling of missing data in floating point as well as non-floating
point data
- Size mutability: columns can be inserted and deleted from DataFrame and
higher dimensional objects
- Automatic and explicit data alignment: objects can be explicitly aligned
to a set of labels, or the user can simply ignore the labels and let
`Series`, `DataFrame`, etc. automatically align the data for you in
computations
- Powerful, flexible group by functionality to perform split-apply-combine
operations on data sets, for both aggregating and transforming data
- Make it easy to convert ragged, differently-indexed data in other Python
and NumPy data structures into DataFrame objects
- Intelligent label-based slicing, fancy indexing, and subsetting of large
data sets
- Intuitive merging and joining data sets
- Flexible reshaping and pivoting of data sets
- Hierarchical labeling of axes (possible to have multiple labels per tick)
- Robust IO tools for loading data from flat files (CSV and delimited),
Excel files, databases, and saving/loading data from the ultrafast HDF5
format
- Time series-specific functionality: date range generation and frequency
conversion, moving window statistics, moving window linear regressions,
date shifting and lagging, etc.
PACKAGE CONTENTS
_libs (package)
_version
api (package)
compat (package)
computation (package)
conftest
core (package)
errors (package)
formats (package)
io (package)
json
lib
parser
plotting (package)
stats (package)
testing
tests (package)
tools (package)
tseries (package)
tslib
types (package)
util (package)
SUBMODULES
_hashtable
_lib
_tslib
offsets
DATA
IndexSlice = <pandas.core.indexing._IndexSlice object>
NaT = NaT
__docformat__ = 'restructuredtext'
datetools = <module 'pandas.core.datetools' from 'F:\\Anaconda\\lib\\s...
describe_option = <pandas.core.config.CallableDynamicDoc object>
get_option = <pandas.core.config.CallableDynamicDoc object>
options = <pandas.core.config.DictWrapper object>
plot_params = {'xaxis.compat': False}
reset_option = <pandas.core.config.CallableDynamicDoc object>
set_option = <pandas.core.config.CallableDynamicDoc object>
VERSION
0.20.3
FILE
f:\anaconda\lib\site-packages\pandas\__init__.py
help(list) #函数
Help on class list in module builtins:
class list(object)
| list() -> new empty list
| list(iterable) -> new list initialized from iterable's items
|
| Methods defined here:
|
| __add__(self, value, /)
| Return self+value.
|
| __contains__(self, key, /)
| Return key in self.
|
| __delitem__(self, key, /)
| Delete self[key].
|
| __eq__(self, value, /)
| Return self==value.
|
| __ge__(self, value, /)
| Return self>=value.
|
| __getattribute__(self, name, /)
| Return getattr(self, name).
|
| __getitem__(...)
| x.__getitem__(y) <==> x[y]
|
| __gt__(self, value, /)
| Return self>value.
|
| __iadd__(self, value, /)
| Implement self+=value.
|
| __imul__(self, value, /)
| Implement self*=value.
|
| __init__(self, /, *args, **kwargs)
| Initialize self. See help(type(self)) for accurate signature.
|
| __iter__(self, /)
| Implement iter(self).
|
| __le__(self, value, /)
| Return self<=value.
|
| __len__(self, /)
| Return len(self).
|
| __lt__(self, value, /)
| Return self<value.
|
| __mul__(self, value, /)
| Return self*value.n
|
| __ne__(self, value, /)
| Return self!=value.
|
| __new__(*args, **kwargs) from builtins.type
| Create and return a new object. See help(type) for accurate signature.
|
| __repr__(self, /)
| Return repr(self).
|
| __reversed__(...)
| L.__reversed__() -- return a reverse iterator over the list
|
| __rmul__(self, value, /)
| Return self*value.
|
| __setitem__(self, key, value, /)
| Set self[key] to value.
|
| __sizeof__(...)
| L.__sizeof__() -- size of L in memory, in bytes
|
| append(...)
| L.append(object) -> None -- append object to end
|
| clear(...)
| L.clear() -> None -- remove all items from L
|
| copy(...)
| L.copy() -> list -- a shallow copy of L
|
| count(...)
| L.count(value) -> integer -- return number of occurrences of value
|
| extend(...)
| L.extend(iterable) -> None -- extend list by appending elements from the iterable
|
| index(...)
| L.index(value, [start, [stop]]) -> integer -- return first index of value.
| Raises ValueError if the value is not present.
|
| insert(...)
| L.insert(index, object) -- insert object before index
|
| pop(...)
| L.pop([index]) -> item -- remove and return item at index (default last).
| Raises IndexError if list is empty or index is out of range.
|
| remove(...)
| L.remove(value) -> None -- remove first occurrence of value.
| Raises ValueError if the value is not present.
|
| reverse(...)
| L.reverse() -- reverse *IN PLACE*
|
| sort(...)
| L.sort(key=None, reverse=False) -> None -- stable sort *IN PLACE*
|
| ----------------------------------------------------------------------
| Data and other attributes defined here:
|
| __hash__ = None
2.hex()
将十进制转成十六进制(括号里放十进制的数),返回一个字符串
hex(10)
'0xa'
hex(99)
'0x63'
type(hex(99))
str
3.oct()
将十进制转成八进制,返回一个字符串
oct(1307)
'0o2433'
oct(2013)
'0o3735'
type(oct(2013))
str
4.bin()
将十进制转成二进制,返回一个字符串
bin(6)
'0b110'
type(bin(6))
str
5.id()
获取对象的内存地址
a = "小可爱"
id(a)
496383449200
b = 20160101
id(b)
496382826736
6.dir()
dir() 函数不带参数时,返回当前范围内的变量、方法和定义的类型列表;
带参数时,返回参数的属性、方法列表。
如果参数包含方法__dir__(),该方法将被调用。
如果参数不包含__dir__(),该方法将最大限度地收集参数信息
dir()
['In',
'Out',
'_',
'_1',
'_10',
'_11',
'_12',
'_14',
'_15',
'_16',
'_17',
'_18',
'_19',
'_2',
'_20',
'_22',
'_23',
'_24',
'_25',
'_26',
'_27',
'_28',
'_29',
'_3',
'_30',
'_31',
'_33',
'_35',
'_38',
'_39',
'_4',
'_40',
'_41',
'_42',
'_43',
'_44',
'_45',
'_5',
'_6',
'__',
'___',
'__builtin__',
'__builtins__',
'__doc__',
'__loader__',
'__name__',
'__package__',
'__spec__',
'_dh',
'_i',
'_i1',
'_i10',
'_i11',
'_i12',
'_i13',
'_i14',
'_i15',
'_i16',
'_i17',
'_i18',
'_i19',
'_i2',
'_i20',
'_i21',
'_i22',
'_i23',
'_i24',
'_i25',
'_i26',
'_i27',
'_i28',
'_i29',
'_i3',
'_i30',
'_i31',
'_i32',
'_i33',
'_i34',
'_i35',
'_i36',
'_i37',
'_i38',
'_i39',
'_i4',
'_i40',
'_i41',
'_i42',
'_i43',
'_i44',
'_i45',
'_i46',
'_i5',
'_i6',
'_i7',
'_i8',
'_i9',
'_ih',
'_ii',
'_iii',
'_oh',
'a',
'b',
'exit',
'get_ipython',
'numpy',
'pandas',
'quit',
'result',
'sys',
'x']
dir(list)
['__add__',
'__class__',
'__contains__',
'__delattr__',
'__delitem__',
'__dir__',
'__doc__',
'__eq__',
'__format__',
'__ge__',
'__getattribute__',
'__getitem__',
'__gt__',
'__hash__',
'__iadd__',
'__imul__',
'__init__',
'__init_subclass__',
'__iter__',
'__le__',
'__len__',
'__lt__',
'__mul__',
'__ne__',
'__new__',
'__reduce__',
'__reduce_ex__',
'__repr__',
'__reversed__',
'__rmul__',
'__setattr__',
'__setitem__',
'__sizeof__',
'__str__',
'__subclasshook__',
'append',
'clear',
'copy',
'count',
'extend',
'index',
'insert',
'pop',
'remove',
'reverse',
'sort']
7.all()
判断列表或元组中的所有元素是否都为True,如果都为True,那么就返回True。
0,空值(即""),None,False均被判定为False,其余为True。
Remember that,空列表、空元组返回的是True,不是False哦
all([1, 2, 3, 4])
True
all([0, 1, 2, 3])
False
all(["", 1, 2, 3])
False
all([None, 1])
False
all([])
True
all(())
True
8.any()
判断列表或元组中的元素,如果有一个为True,那么就返回True。
any([0, None, 1])
True
any(["", False])
False
all跟any的区别就是:all要全部True才返回True,any只要有一个True就返回True。
9.abs()
返回数字的绝对值
abs(-100)
100
abs(20170516)
20170516
10.map(function, iterable, …)
根据函数对序列做映射(看例子好懂一点)
def result(x):
return x + 100
map(result, [1,2,3,4,5])
<map at 0x7392c4a390>
11.range(start, stop, step)
返回一个对象,instead of 一个列表(python2 返回的才是列表),用list(range())可实现输出为列表。
range(10)
range(0, 10)
list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
type(range(10))
range
12.chr()
返回整数(十进制or十六进制)对应的ASCII字符。
chr(2017)
'ߡ'
chr(0x666)
'٦'
13.max()
返回给定参数的最大值,参数可以为序列
max([1,2,3,4,2017])
2017
max(1,2,2333)
2333
14.min()
返回给定参数的最大值,参数可以为序列
min("a", "b", "c")
'a'
min(1307, 1401, 1206)
1206
15.len()
返回对象(字符、列表、元组等)长度或项目个数
len(("a", "b", "c"))
3
len("I love you Math!")
16
16.reversed()
返回一个反转的迭代器, 要转换的序列可以是 tuple, string, list 或 range
a = ("Mike", "love", "Cathy")
print(list(reversed(a)))
['Cathy', 'love', 'Mike']
b = [520, 1314, 5201314]
print(list(reversed(b)))
[5201314, 1314, 520]
17.sorted()
对可迭代对象进行排序操作,默认是升序(参数reverse= False)
sorted([1, 2, 999])
[1, 2, 999]
sorted([1, 2, 999], reverse=True)
[999, 2, 1]
18.isinstance()
判断一个对象是否是一个已知的类型,类似 type()
isinstance([1], list)
True
isinstance([1], dict)
False
19.type()
返回对象的类型
type(20160101)
int
type(20160101) == int
True
isinstance() 与 type() 区别:
type() 不会认为子类是一种父类类型,不考虑继承关系。
isinstance() 会认为子类是一种父类类型,考虑继承关系。
如果要判断两个类型是否相同推荐使用 isinstance()。
20.divmod()
求商、求余
divmod(8, 2)
(4, 0)
divmod(8.0, 2)
(4.0, 0.0)
divmod(-8, 2.0)
(-4.0, 0.0)
21.hash()
获取取一个对象(字符串或者数值等)的哈希值
hash('Love you')
5600379523179052084
hash(8888)
8888
hash('8888')
-5690624612815825000
记录一些python内置函数的更多相关文章
- python内置函数print输出到文件,实现日志记录的功能
# bulid time 2018-6-22 import os import time def log(*args, **kwargs): # *kargs 为了通用 可不传 rule = &quo ...
- 【转】Python 内置函数 locals() 和globals()
Python 内置函数 locals() 和globals() 转自: https://blog.csdn.net/sxingming/article/details/52061630 1>这两 ...
- Python | 内置函数(BIF)
Python内置函数 | V3.9.1 | 共计155个 还没学完, 还没记录完, 不知道自己能不能坚持记录下去 1.ArithmeticError 2.AssertionError 3.Attrib ...
- python内置函数
python内置函数 官方文档:点击 在这里我只列举一些常见的内置函数用法 1.abs()[求数字的绝对值] >>> abs(-13) 13 2.all() 判断所有集合元素都为真的 ...
- python 内置函数和函数装饰器
python内置函数 1.数学相关 abs(x) 取x绝对值 divmode(x,y) 取x除以y的商和余数,常用做分页,返回商和余数组成一个元组 pow(x,y[,z]) 取x的y次方 ,等同于x ...
- Python基础篇【第2篇】: Python内置函数(一)
Python内置函数 lambda lambda表达式相当于函数体为单个return语句的普通函数的匿名函数.请注意,lambda语法并没有使用return关键字.开发者可以在任何可以使用函数引用的位 ...
- [python基础知识]python内置函数map/reduce/filter
python内置函数map/reduce/filter 这三个函数用的顺手了,很cool. filter()函数:filter函数相当于过滤,调用一个bool_func(只返回bool类型数据的方法) ...
- Python内置函数进制转换的用法
使用Python内置函数:bin().oct().int().hex()可实现进制转换. 先看Python官方文档中对这几个内置函数的描述: bin(x)Convert an integer numb ...
- Python内置函数(12)——str
英文文档: class str(object='') class str(object=b'', encoding='utf-8', errors='strict') Return a string ...
随机推荐
- Python之Numpy库常用函数大全(含注释)(转)
为收藏学习,特转载:https://blog.csdn.net/u011995719/article/details/71080987 前言:最近学习Python,才发现原来python里的各种库才是 ...
- 【VS开发】【数据库开发】windows下libevent x64库静态编译
按照libevent的文档,使用VC的nmake -f Makefile.nmake即可编译32位release模式.因为项目中要求编译64位的版本,需要在Makefile.nmake中添加一个LIB ...
- gcc/clang编译带pthread.h头文件的源码时需要的参数
今天敲了一个小程序,编译时出现错误:undefined reference pthread_create 原来由于pthread库不是Linux系统默认的库,连接时需要使用库libpthread.a, ...
- 深入理解linux内核-内存寻址
逻辑地址:由一个段和偏移量组成的地址线性地址(虚拟地址):物理地址:CPU的物理地址线相对应的地址32或36位 多处理器系统中每个CPU对应一个GDT 局部线程存储:用于线程内部的各个函数调用都能访问 ...
- java23种设计模式之九: 抽象工厂方法模式
一.抽象工厂定义 上一讲我们说了一下工厂方法,那么我们如何对工厂进行抽象. 因为工厂是生产产品的,现在我们需要工厂抽象,只生产抽象产品,不生产具体的产品,这同时也体现了java的多态. 现在有2个抽象 ...
- 详解Cookie、Session和缓存
1 Cookie和Session Cookie和Session都为了用来保存状态信息,都是保存客户端状态的机制,它们都是为了解决HTTP无状态的问题而所做的努力. Session可以用Cookie来实 ...
- spring cloud微服务实践三
上篇文章里我们实现了spring cloud中的服务提供者和使用者.接下来我们就来看看spring cloud中微服务的其他组件. 注:这一个系列的开发环境版本为 java1.8, spring bo ...
- 1.ASP.NET Core Docker学习-Docker介绍与目录
Docker的优点: 1节约时间,快速部署和启动 2节约成本 3标准化应用发布 4方便做持续集成 5可以用Docker做为集群中的轻量主机或节点 6方便构建基于SOA或者微服务架构 的系统 学习目录: ...
- (三)引用中央仓库中不存在的jar包
有些jar包有版权oracle.sqlserver等,所以在maven的中央仓库是不提供下载引用的,但是这个jar包我们可以在别的地方下载到电脑,这是我们需要收工安装到本地仓库,然后再引用 A:手工安 ...
- 获取类的描述信息 DescriptionAttribute
static void Main(string[] args) { var attrs = typeof(TestClass).GetCustomAttributes(typeof(System.Co ...