RSA是一种非对称加密算法,在公开密钥和电子商业中RSA被广泛使用。它是基于一个很简单的数论事实,两个素数相乘很容易,对两素数乘积因式分解很困难。原理就不再阐述了,我谈谈算法的编程实现过程。

一、RSA加密和解密过程是基于以下形式,其中明文为M,密文为C,公匙PU={e, n},密匙PR={d, n}。

1、准备工作,选择两个大素数p和q,计算p和q的乘积n,计算p-1和q-1的乘积,选择一个与p-1和q-1乘积互质的数e,计算出d

2、加密过程

3、解密过程

程序没有生成大素数,只是列出1000以内的素数,随机取两个素数p和q,利用欧德里德扩展算法计算出e和d,用反复平方法求数的幂

二、程序流程图

三、程序源码

 #include <iostream>
#include <cmath>
#include <cstring>
#include <ctime>
#include <cstdlib>
using namespace std; int Plaintext[];//明文
long long Ciphertext[];//密文
int n, e = , d; //二进制转换
int BianaryTransform(int num, int bin_num[])
{ int i = , mod = ; //转换为二进制,逆向暂存temp[]数组中
while(num != )
{
mod = num%;
bin_num[i] = mod;
num = num/;
i++;
} //返回二进制数的位数
return i;
} //反复平方求幂
long long Modular_Exonentiation(long long a, int b, int n)
{
int c = , bin_num[];
long long d = ;
int k = BianaryTransform(b, bin_num)-; for(int i = k; i >= ; i--)
{
c = *c;
d = (d*d)%n;
if(bin_num[i] == )
{
c = c + ;
d = (d*a)%n;
}
}
return d;
} //生成1000以内素数
int ProducePrimeNumber(int prime[])
{
int c = , vis[];
memset(vis, , sizeof(vis));
for(int i = ; i <= ; i++)if(!vis[i])
{
prime[c++] = i;
for(int j = i*i; j <= ; j+=i)
vis[j] = ;
} return c;
} //欧几里得扩展算法
int Exgcd(int m,int n,int &x)
{
int x1,y1,x0,y0, y;
x0=; y0=;
x1=; y1=;
x=; y=;
int r=m%n;
int q=(m-r)/n;
while(r)
{
x=x0-q*x1; y=y0-q*y1;
x0=x1; y0=y1;
x1=x; y1=y;
m=n; n=r; r=m%n;
q=(m-r)/n;
}
return n;
} //RSA初始化
void RSA_Initialize()
{
//取出1000内素数保存在prime[]数组中
int prime[];
int count_Prime = ProducePrimeNumber(prime); //随机取两个素数p,q
srand((unsigned)time(NULL));
int ranNum1 = rand()%count_Prime;
int ranNum2 = rand()%count_Prime;
int p = prime[ranNum1], q = prime[ranNum2]; n = p*q; int On = (p-)*(q-); //用欧几里德扩展算法求e,d
for(int j = ; j < On; j+=)
{
int gcd = Exgcd(j, On, d);
if( gcd == && d > )
{
e = j;
break;
} } } //RSA加密
void RSA_Encrypt()
{
cout<<"Public Key (e, n) : e = "<<e<<" n = "<<n<<'\n';
cout<<"Private Key (d, n) : d = "<<d<<" n = "<<n<<'\n'<<'\n'; int i = ;
for(i = ; i < ; i++)
Ciphertext[i] = Modular_Exonentiation(Plaintext[i], e, n); cout<<"Use the public key (e, n) to encrypt:"<<'\n';
for(i = ; i < ; i++)
cout<<Ciphertext[i]<<" ";
cout<<'\n'<<'\n';
} //RSA解密
void RSA_Decrypt()
{
int i = ;
for(i = ; i < ; i++)
Ciphertext[i] = Modular_Exonentiation(Ciphertext[i], d, n); cout<<"Use private key (d, n) to decrypt:"<<'\n';
for(i = ; i < ; i++)
cout<<Ciphertext[i]<<" ";
cout<<'\n'<<'\n';
} //算法初始化
void Initialize()
{
int i;
srand((unsigned)time(NULL));
for(i = ; i < ; i++)
Plaintext[i] = rand()%; cout<<"Generate 100 random numbers:"<<'\n';
for(i = ; i < ; i++)
cout<<Plaintext[i]<<" ";
cout<<'\n'<<'\n';
} int main()
{
Initialize(); while(!e)
RSA_Initialize(); RSA_Encrypt(); RSA_Decrypt(); return ;
}

四、运行结果

RSA加密算法c++简单实现的更多相关文章

  1. RSA加密算法的简单案例

    RSA加密算法是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的绝大多数密码攻击. 那关于RSA加密算法有哪些应用呢?以下举一个数据库身份验证的案例. 在使用数据集进行身份认证时,密码存在数据 ...

  2. 加密算法——RSA算法(c++简单实现)

    RSA算法原理转自:https://www.cnblogs.com/idreamo/p/9411265.html C++代码实现部分为本文新加 RSA算法简介 RSA是最流行的非对称加密算法之一.也被 ...

  3. 用实例讲解RSA加密算法(精)

    RSA是第一个比较完善的公开密钥算法,它既能用于加密,也能用于数字签名.RSA以它的三个发明者Ron Rivest, Adi Shamir, Leonard Adleman的名字首字母命名,这个算法经 ...

  4. RSA加密算法的加密与解密

    转发原文链接:RSA加密算法加密与解密过程解析 1.加密算法概述 加密算法根据内容是否可以还原分为可逆加密和非可逆加密. 可逆加密根据其加密解密是否使用的同一个密钥而可以分为对称加密和非对称加密. 所 ...

  5. 轻松学习RSA加密算法原理

    转自:http://blog.csdn.net/sunmenggmail/article/details/11994013 http://blog.csdn.net/q376420785/articl ...

  6. RSA加密算法原理及RES签名算法简介

    第一部分:RSA算法原理与加密解密 一.RSA加密过程简述 A和B进行加密通信时,B首先要生成一对密钥.一个是公钥,给A,B自己持有私钥.A使用B的公钥加密要加密发送的内容,然后B在通过自己的私钥解密 ...

  7. 浅谈RSA加密算法

    一.什么是非对称加密 1.加密的密钥与加密的密钥不相同,这样的加密算法称之为非对称加密 2.密钥分为:公钥,私钥  公钥:可以对外给任何人的加密和解密的密码,是公开的 私钥:通过私钥可以生成公钥,但从 ...

  8. 轻松学习RSA加密算法原理 (转)

    轻松学习RSA加密算法原理 (转) http://blog.csdn.net/q376420785/article/details/8557266 http://www.ruanyifeng.com/ ...

  9. [转] 用实例给新手讲解RSA加密算法

    http://www.cfca.com.cn/zhishi/wz-012.htm PS: 通常公钥对数据加密,私钥对数据解密:私钥对数据签名,公钥对数据签名进行认证 RSA加密算法是最常用的非对称加密 ...

随机推荐

  1. net core体系-web应用程序-4asp.net core2.0 项目实战(CMS)-第二章 入门篇-快速入门ASP.NET Core看这篇就够了

    .NET Core实战项目之CMS 第二章 入门篇-快速入门ASP.NET Core看这篇就够了   原文链接:https://www.cnblogs.com/yilezhu/p/9985451.ht ...

  2. Android应用市场App发布

    来自知乎 Android应用市场App发布说到官方渠道,不得不说一些主要的大市场了,如:360.小米.应用宝.91.安卓.百度.豌豆荚.安智.现在我来一一说它们的一些简单特点. 1,360 (1)当天 ...

  3. SpringBoot与缓存、消息、检索、任务、安全与监控

    一.Spring抽象缓存 Spring从3.1开始定义了org.springframework.cache.Cache和org.springframework.cache.CacheManager接口 ...

  4. script标签所应放的位置

    一般放置的位置:<head>标签内,<body>标签内,<body>标签后(建议放在body标签后,利于页面的优化,优化页面结构加载的速度) 1.<head& ...

  5. Web框架概述——React.js

    目前,在前端Web开发中,三大热门框架为React.js,Vue.js,Angular.js .当然,三大框架各有各的优缺点,这里就不多说了,下面我就针对前段时间所学的React框架做一下整体知识点的 ...

  6. php实现多进程、多线程

    孤儿进程:一个父进程退出,而它的一个或多个子进程还在运行,那么那些子进程将成为孤儿进程.孤儿进程将被init进程(进程号为1)所收养,并由init进程对它们完成状态收集工作. 僵尸进程:一个进程使用f ...

  7. 给datagrid一列中的数据加上单位

    { field:'computeRate', title:'完成百分比', width:100, align:'center', halign:'center', sortable:true, for ...

  8. vue使用sass报Modele build failed: TypeError: this.getResolve is not a function at Object.loader...

    项目中使用sass报错,之前一直使用同样的安装方式 cnpm install sass-loader node-sass -D,正常使用没问题,没想到这次同样的方式却报错了,网上查的原因是sass-l ...

  9. DX使用随记--其他

    1.  百分号显示格式 百分号:{0:P}表示显示为百分号模式.如数据源中为0.5.表示出来为50%

  10. RobHess的SIFT代码解析之kd树

    平台:win10 x64 +VS 2015专业版 +opencv-2.4.11 + gtk_-bundle_2.24.10_win32 主要参考:1.代码:RobHess的SIFT源码:SIFT+KD ...