题面

题解

设\(f[i]\)为根节点到\(i\)的最小耗时

设\(S\)为\(i\)的祖先集合, 可以得到

\[f[i] = min(f[j] + (i - j)^p),j \in S
\]

对于\((i - j)^p\), 我们有

\[((i + 1) - (j + 1))^p + (i - j)^p \leq ((i + 1) - j)^p + (i - (j + 1))^p
\]

可以发现这是一个满足四边形不等式的式子

直接上决策单调性即可(我这个写法是看的别人的, 应该是对的吧)

Code

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#define itn int
#define reaD read
#define N 100005
using namespace std; int n, p, w[N], cnt;
long long pw[N], ans; template < typename T >
inline T read()
{
T x = 0, w = 1; char c = getchar();
while(c < '0' || c > '9') { if (c == '-') w = -1; c = getchar(); }
while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
return x * w;
} namespace Graph
{
int head[N];
struct edge { int to, next; } e[N];
inline void adde(int u, int v) { e[++cnt] = (edge) { v, head[u] }; head[u] = cnt; }
}; using namespace :: Graph; long long fpow(long long x, int y = p)
{
long long res = 1;
for( ; y; y >>= 1, x = 1ll * x * x)
if(y & 1) res = 1ll * res * x;
return res;
} namespace DFS
{
long long f[N];
int top, stk[N], pos[N];
struct node { int l, r, id; } q[N];
void dfs(int u, int fa)
{
if(u == 1) stk[++top] = u, f[u] = 0, pos[u] = top;
else
{
int num;
long long tmp = f[0];
for(int i = pos[fa]; i <= top; i++)
{
long long res = f[stk[i]] + w[stk[i]] + fpow(u - stk[i], p);
if(res <= tmp) num = i, tmp = res;
}
f[u] = tmp;
pos[u] = num;
stk[++top] = u;
}
bool flag = 0;
for(int i = head[u]; i; i = e[i].next)
flag = 1, dfs(e[i].to, u);
if(!flag) ans = min(ans, f[u]);
top--;
}
}; using namespace :: DFS; int main()
{
n = read <int> (); p = read <int> ();
for(int i = 1; i <= n; i++)
{
w[i] = read <int> (); int u = read <int> ();
if(u) adde(u, i);
}
memset(f, 0x3f, sizeof(f));
ans = f[0];
dfs(1, 0);
printf("%lld\n", ans);
return 0;
}

[51nod1789] 跑得比谁都快的更多相关文章

  1. BZOJ:4219: 跑得比谁都快 3007: 拯救小云公主

    4219: 跑得比谁都快 3007: 拯救小云公主 三角剖分的解释可以看这里:http://www.cnblogs.com/Enceladus/p/6706444.html 后一道是前一道的弱化版. ...

  2. 51Nod 1781 跑的比谁都快

    香港记者跑的比谁都快是众所周知的常识. 现在,香港记者站在一颗有 n 个点的树的根结点上(即1号点),编号为 i 的点拥有权值 a[i] ,数据保证每个点的编号都小于它任意孩子结点的别号. 我们假定这 ...

  3. 跑的比谁都快 51Nod - 1789

    香港记者跑的比谁都快是众所周知的常识.   现在,香港记者站在一颗有  nn 个点的树的根结点上(即1号点),编号为  ii 的点拥有权值  a[i]a[i] ,数据保证每个点的编号都小于它任意孩子结 ...

  4. iOS 1 到 iOS 10 ,我都快老了

    iOS 1:iPhone诞生 虽然很难想像,但初代iPhone在问世时在功能方面其实远远落后于那时的竞争对手,比如Windows Mobile.Palm OS.塞班.甚至是黑莓.它不支持3G.多任务. ...

  5. jdk1.8新特性,还不知道的朋友还不看看,1.9都快出来了

    一.接口的默认方法 Java 8允许我们给接口添加一个非抽象的方法实现,只需要使用 default关键字即可,这个特征又叫做扩展方法,示例如下:代码如下:interface Formula {     ...

  6. 入坑IT都快十年了

    一起帮的开发直播已经告一段落:一是主体的功能差不多都实现了,二是用到的架构技术都展示得差不多了.以后就算继续开发,也应该都是一些“技术上”重复的工作而已.整个直播过程耗时近半年,SVN提交1062次, ...

  7. 今天我看了一个H5游戏EUI的例子,我都快分不清我到底是在用什么语言编译了代码了,作为刚刚学习H5游戏开发的菜鸟只能默默的收集知识

    今天看了一个EUI的demo,也是接触H5游戏开发的第五天了,我想看看我能不能做点什么出来,哎,自己写果然还是有问题的.在看EUI哪一个demo的时候就遇见了一些摇摆不定的问题,我觉得提出来 1.to ...

  8. Java9都快发布了,Java8的十大新特性你了解多少呢?

    Java 9预计将于今年9月份发布,这是否会是一次里程碑式的版本,我们拭目以待.今天,我们先来复习一下2014年发布的Java 8的十大新特性. Java 8可谓是自Java 5以来最具革命性的版本了 ...

  9. "迷途"的野指针,都快找不着北了

    指针,C语言开发者表示很淦,指针的使用,很多人表示不敢直面ta,不像Java一样,有垃圾自动回收功能,我们不用担心那么多内存泄漏等问题,那C语言里边呢,指针又分为了"野指针",&q ...

随机推荐

  1. 复习二叉数 pat l2-006 数的遍历

    L2-006. 树的遍历   给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列.这里假设键值都是互不相等的正整数. 输入格式: 输入第一行给出一个正整数N(<=30),是二叉树中结点 ...

  2. 缩放动画(ScaleTransform)

    在Silverlight的动画框架中,ScaleTransform类提供了在二维空间中的坐标内进行缩放操作,通过ScaleTransform可以在水平或垂直方向的缩放和拉伸对象,以实现一个简单的缩放动 ...

  3. EFcore的 基础理解<三> 多对多,唯一约束

    唯一约束,替代键. modelBuilder.Entity<Car>() .HasAlternateKey(c => new { c.State, c.LicensePlate }) ...

  4. T4模板生成文件要点记录

    可以使用 $(variableName) 语法引用 Visual Studio 或 MSBuild 变量(如 $(SolutionDir)),以及使用 %VariableName% 来引用环境变量.介 ...

  5. 网络编程之NIO

    传统的BIO(Blocking IO)的缺点: 1.基于阻塞式IO建立起来的,导致服务端一直阻塞等待着客户端发起请求,如果客户端不发起,服务端的的业务线程会一直存. 2.弹性伸缩能力差,线程数和客户端 ...

  6. 华为机试题:仿LISP

    package com.nowcoder.huawei; import java.util.*; public class LISP { // 只通过80% // (+ (* 2 3) (^ 4)) ...

  7. 5.SpringMVC 配置式开发-处理器适配器

    处理器适配器HandlerAdapter 1.SimpleControllerHandlerAdapter(默认) 所有实现了 Controller 接口的处理器 Bean,均是通过SimpleCon ...

  8. Spring Data JPA 大纲归纳

    第一天: springdatajpa day1:orm思想和hibernate以及jpa的概述和jpa的基本操作 day2:springdatajpa的运行原理以及基本操作 day3:多表操作,复杂查 ...

  9. 【Struts2】Ognl与ValueStack

    一.OGNL 1.1 概述 1.2 OGNL 五大类功能 1.3 演示 二.ValueStack 2.1 概述 2.2 ValueStack结构 2.3 结论 2.3 一些问题 三.OGNL表达式常见 ...

  10. vs code 开发小程序会用到的插件

    主要介绍一下几个vscode插件,在vscode中搜索插件关键字点击安装即可. 1) vscode weapp api,  语法结构api; 2) minapp-vscode 3) vscode wx ...