题目链接:

http://codeforces.com/contest/1108/problem/E2

题意:

给出$n$个数和$m$个操作

每个操作是下标为$l$到$r$的数减一

选出某些操作,使$n$个数的最大值减最小值最大

数据范围:

$1 \le n \le 10^5$

$0 \le m \le 300$

$-10^6 \le a_i \le 10^6$

分析:

假设选择第$i$位置作为最小值,那么我们选取所有包含$i$的区间可以得到选择第$i$位置为最小值的最佳答案

第一步,我们从$1$到$n$枚举最小值的位置

第二步,我们用扫描线来添加和减少题目给出的区间影响,例如最小值为$i$时,我们要让所有的包含i区间的操作生效

第三步,计算以$i$为最小值时的最优解

ac代码:

#include<bits/stdc++.h>
#define ll long long
#define pa pair<int,int>
using namespace std;
const int maxn=1e5+10;
const int maxm=300+10;
const ll mod=1e9+7;
int ans=-1,inde,tree[maxn*4],lazy[maxn*4],num[maxn],n;
pa quer[maxm];
vector<pa>ve[maxn];
vector<int>ve2;
void build(int st,int en,int rt)
{
if(st==en)
{
tree[rt]=num[st];
return ;
}
int md=(st+en)/2;
build(st,md,rt*2);
build(md+1,en,rt*2+1);
tree[rt]=max(tree[rt*2],tree[rt*2+1]);
}
void update(int l,int r,int x,int st,int en,int rt)
{
if(l>en||r<st)return ;
if(l<=st&&r>=en)
{
lazy[rt]+=x;
tree[rt]+=x;
return ;
}
if(lazy[rt])
{
int v=lazy[rt];
lazy[rt*2]+=v;
lazy[rt*2+1]+=v;
tree[rt*2]+=v;
tree[rt*2+1]+=v;
lazy[rt]=0;
}
int md=(st+en)/2;
update(l,r,x,st,md,rt*2);
update(l,r,x,md+1,en,rt*2+1);
tree[rt]=max(tree[rt*2],tree[rt*2+1]);
}
int Quer(int x,int st,int en,int rt)
{
if(st==en)
return tree[rt];
if(lazy[rt])
{
int v=lazy[rt];
lazy[rt*2]+=v;
lazy[rt*2+1]+=v;
tree[rt*2]+=v;
tree[rt*2+1]+=v;
lazy[rt]=0;
}
int md=(st+en)/2;
int res;
if(x<=md)res=Quer(x,st,md,rt*2);
else res=Quer(x,md+1,en,rt*2+1);
tree[rt]=max(tree[rt*2],tree[rt*2+1]);
return res;
}
int main()
{
int q;
scanf("%d %d",&n,&q);
for(int i=1;i<=n;i++)
scanf("%d",&num[i]);
build(1,n,1);
for(int i=1;i<=q;i++)
{
int l,r;
scanf("%d %d",&l,&r);
quer[i].first=l;
quer[i].second=r;
ve[l].push_back(make_pair(i,-1));
ve[r+1].push_back(make_pair(i,+1));
}
for(int i=1;i<=n;i++)
{
for(int j=0;j<ve[i].size();j++)
{
int v=ve[i][j].first;
int add=ve[i][j].second;
update(quer[v].first,quer[v].second,add,1,n,1);
}
int res=tree[1]-Quer(i,1,n,1);
if(res>ans)
{
inde=i;
ans=res;
}
}
printf("%d\n",ans);
int res=0;
for(int i=1;i<=q;i++)
if(inde>=quer[i].first&&inde<=quer[i].second)
ve2.push_back(i);
printf("%d\n",ve2.size());
for(int i=0;i<ve2.size();i++)
printf("%d%c",ve2[i]," \n"[i==ve2.size()-1]);
return 0;
}

  

codeforces#1108E2. Array and Segments (线段树+扫描线)的更多相关文章

  1. Codeforces 1108E (Array and Segments) 线段树

    题意:给你一个长度为n的序列和m组区间操作,每组区间操作可以把区间[l, r]中的数字都-1,请选择一些操作(可以都不选),使得序列的最大值和最小值的差值尽量的大. 思路:容易发现如果最大值和最小值都 ...

  2. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树扫描线

    D. Vika and Segments 题目连接: http://www.codeforces.com/contest/610/problem/D Description Vika has an i ...

  3. Codeforces Round #337 (Div. 2) D. Vika and Segments (线段树+扫描线+离散化)

    题目链接:http://codeforces.com/contest/610/problem/D 就是给你宽度为1的n个线段,然你求总共有多少单位的长度. 相当于用线段树求面积并,只不过宽为1,注意y ...

  4. Codeforces 1108E2 Array and Segments (Hard version) 差分, 暴力

    Codeforces 1108E2 E2. Array and Segments (Hard version) Description: The only difference between eas ...

  5. Codeforces 1108E2 Array and Segments (Hard version)(差分+思维)

    题目链接:Array and Segments (Hard version) 题意:给定一个长度为n的序列,m个区间,从m个区间内选择一些区间内的数都减一,使得整个序列的最大值减最小值最大. 题解:利 ...

  6. Codeforces 610D Vika and Segments 线段树+离散化+扫描线

    可以转变成上一题(hdu1542)的形式,把每条线段变成宽为1的矩形,求矩形面积并 要注意的就是转化为右下角的点需要x+1,y-1,画一条线就能看出来了 #include<bits/stdc++ ...

  7. Codeforces VK CUP 2015 D. Closest Equals(线段树+扫描线)

    题目链接:http://codeforces.com/contest/522/problem/D 题目大意:  给你一个长度为n的序列,然后有m次查询,每次查询输入一个区间[li,lj],对于每一个查 ...

  8. Codeforces Round #337 (Div. 2) D. Vika and Segments 线段树 矩阵面积并

    D. Vika and Segments     Vika has an infinite sheet of squared paper. Initially all squares are whit ...

  9. hdu 1828 线段树扫描线(周长)

    Picture Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Sub ...

随机推荐

  1. 《深入理解 Java 虚拟机》学习 -- 类加载机制

    <深入理解 Java 虚拟机>学习 -- 类加载机制 1. 概述 虚拟机把描述类的数据从 Class 文件加载到内存,并对数据进行校验.转换解析和初始化,最终形成可以被虚拟机直接使用的 J ...

  2. Jmeter4.0---- 修改jmeter源代码(18)

    1.说明 jmeter本身功能很强大,但是在使用的时候我们会发现有些想法jmeter无法帮我们实现,这个时候就需要我们细节去修改一下它的源代码,来满足我们的需求. * 仅供参考 2.步骤 第一步: j ...

  3. jQuery实现购物车效果

    简单的购物车效果 <!DOCTYPE html> <html> <head> <meta charset="utf-8"> < ...

  4. vue生命周期详细过程

  5. Mac下安装Redis及Redis Desktop Manager

    1.简介 Redis 是一个开源(BSD许可)的,内存中的数据结构存储系统,它可以用作数据库.缓存和消息中间件. 它支持多种类型的数据结构,如 字符串(strings), 散列(hashes), 列表 ...

  6. 17.SpringMVC核心技术-拦截器

    SpringMVC 中的 Interceptor 拦截器是非常重要和相当有用的,它的主要作用是拦截指定 的用户请求, 并进行相应的预处理与后处理.其拦截的时间点在“处理器映射器根据用户提 交的请求映射 ...

  7. webstorm 注册服务器

    之前都是使用2017.2.27的方法,版本是2017.1.1,还没提示过期,但是根据评论说这个链接已经失效了,评论也给出了个新地址:http://idea.iteblog.com/key.php

  8. 十六, k8s集群资源需求和限制, 以及pod驱逐策略。

    目录 容器的资源需求和资源限制 QoS Classes分类 Guaranteed Burstable Best-Effort kubernetes之node资源紧缺时pod驱逐机制 Qos Class ...

  9. MAC 环境下搭建HttpRunnerManager平台

    1 . mac pycharm 创建虚拟环境 https://blog.csdn.net/qq_39806105/article/details/96908584 2. mac 环境下搭建HttpRu ...

  10. Ubuntu安装libssl-dev失败(依靠aptitude管理降级软件)并记录dpkg展示安装软件列表

    Ubuntu 12.04LTS下直接安装 libssl-dev 失败 提示错误: $ sudo apt-get install libssl-dev Reading package lists... ...