Vases and Flowers

题目链接

http://acm.hdu.edu.cn/showproblem.php?pid=4614

Problem Description

  Alice is so popular that she can receive many flowers everyday. She has N vases numbered from 0 to N-1. When she receive some flowers, she will try to put them in the vases, one flower in one vase. She randomly choose the vase A and try to put a flower in the vase. If the there is no flower in the vase, she will put a flower in it, otherwise she skip this vase. And then she will try put in the vase A+1, A+2, ..., N-1, until there is no flower left or she has tried the vase N-1. The left flowers will be discarded. Of course, sometimes she will clean the vases. Because there are too many vases, she randomly choose to clean the vases numbered from A to B(A <= B). The flowers in the cleaned vases will be discarded.

Input

  The first line contains an integer T, indicating the number of test cases.

  For each test case, the first line contains two integers N(1 < N < 50001) and M(1 < M < 50001). N is the number of vases, and M is the operations of Alice. Each of the next M lines contains three integers. The first integer of one line is K(1 or 2). If K is 1, then two integers A and F follow. It means Alice receive F flowers and try to put a flower in the vase A first. If K is 2, then two integers A and B follow. It means the owner would like to clean the vases numbered from A to B(A <= B).

Output

  For each operation of which K is 1, output the position of the vase in which Alice put the first flower and last one, separated by a blank. If she can not put any one, then output 'Can not put any one.'. For each operation of which K is 2, output the number of discarded flowers.

  Output one blank line after each test case.

Sample Input

    2
10 5
1 3 5
2 4 5
1 1 8
2 3 6
1 8 8
10 6
1 2 5
2 3 4
1 0 8
2 2 5
1 4 4
1 2 3

Sample Output

    3 7
2
1 9
4
Can not put any one. 2 6
2
0 9
4
4 5
2 3

题意

有一个初始全为零的序列,支持两种操作:

1.1 x y 从x开始往后找y个为0的位置并赋值为1,找不满没关系。输出未赋值时第一个为零位置和最后一个为零的位置,如果没有一个为零的位置输出 Can not put any one.

2.2 x y 输出x到y的和,并将x到y赋值成0

题解

主要操作就是区间覆盖和区间求和,至于操作一,我们可以二分查找,左区间就是x,有区间r二分,sum[x,r]随r单调不减,我们只要求最左边的sum[x,r]=1和sum[x,r]=y的位置即可,还有些细节可以仔细想想。

代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define INF 0x7f7f7f7f
#define N 100050
int n,m;
template<typename T>void read(T&x)
{
ll k=0; char c=getchar();
x=0;
while(!isdigit(c)&&c!=EOF)k^=c=='-',c=getchar();
if (c==EOF)exit(0);
while(isdigit(c))x=x*10+c-'0',c=getchar();
x=k?-x:x;
}
void read_char(char &c)
{while(!isalpha(c=getchar())&&c!=EOF);}
struct Node{int l,r,lazy,sum;};
struct segmentTree
{
Node tr[N<<2];
void push_up(int x);
void push_down(int x);
void bt(int x,int l,int r);
void update(int x,int l,int r,int tt);
int query(int x,int l,int r);
int ef(int k,int x,int l,int r);
}seg;
void segmentTree::push_up(int x)
{
int len=tr[x].r-tr[x].l+1;
if (len>1)tr[x].sum=tr[x<<1].sum+tr[x<<1|1].sum;
if (tr[x].lazy!=-1)tr[x].sum=tr[x].lazy*len;
}
void segmentTree::push_down(int x)
{
if (tr[x].lazy==-1)return;
tr[x<<1|1].lazy=tr[x<<1].lazy=tr[x].lazy;
push_up(x<<1);
push_up(x<<1|1);
tr[x].lazy=-1;
}
void segmentTree::bt(int x,int l,int r)
{
tr[x]=Node{l,r,0,0};
if (l==r)return;
int mid=(l+r)>>1;
bt(x<<1,l,mid);
bt(x<<1|1,mid+1,r);
}
void segmentTree::update(int x,int l,int r,int tt)
{
if (l<=tr[x].l&&tr[x].r<=r)
{
tr[x].lazy=tt;
push_up(x);
return;
}
int mid=(tr[x].l+tr[x].r)>>1;
push_down(x);
if (l<=mid)update(x<<1,l,r,tt);
if (mid<r)update(x<<1|1,l,r,tt);
push_up(x);
}
int segmentTree::query(int x,int l,int r)
{
if (l<=tr[x].l&&tr[x].r<=r)return tr[x].sum;
int mid=(tr[x].l+tr[x].r)>>1,ans=0;
push_down(x);
if (l<=mid)ans+=query(x<<1,l,r);
if (mid<r)ans+=query(x<<1|1,l,r);
return ans;
}
int segmentTree::ef(int k,int x,int l,int r)
{
if (l==r)return l;
int mid=(l+r)>>1;
int tp=mid-x+1-query(1,x,mid);
if (tp<k)return ef(k,x,mid+1,r);
if (tp>=k)return ef(k,x,l,mid);
}
void work()
{
read(n); read(m);
seg.bt(1,0,n-1);
for(int i=1;i<=m;i++)
{
int id,x,y;
read(id); read(x); read(y);
if (id==1)
{
int k=seg.query(1,x,n-1);
if (k==n-x){printf("Can not put any one.\n");continue;}
int ds=seg.ef(1,x,x,n-1);
int dw=seg.ef(min(n-x-k,y),x,x,n-1);
seg.update(1,ds,dw,1);
printf("%d %d\n",ds,dw);
}
if (id==2)
{
printf("%d\n",seg.query(1,x,y));
seg.update(1,x,y,0);
}
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("aa.in","r",stdin);
#endif
int T;
read(T);
while(T--)work(),printf("\n");
}

HDU 4614 线段树+二分查找的更多相关文章

  1. L - Vases and Flowers HDU - 4614 线段树+二分

    题意 给出一排空花瓶 有两种操作  1是 从A花瓶开始放F朵花 如果当前瓶有花就跳过前往下一个 直到花用完或者 瓶子到了最后一个为止 输出 成功放花的第一个和最后一个  如果没有输出 can not. ...

  2. 离散化+线段树/二分查找/尺取法 HDOJ 4325 Flowers

    题目传送门 题意:给出一些花开花落的时间,问某个时间花开的有几朵 分析:这题有好几种做法,正解应该是离散化坐标后用线段树成端更新和单点询问.还有排序后二分查找询问点之前总花开数和总花凋谢数,作差是当前 ...

  3. G - Queue HDU - 5493 线段树+二分

    G - Queue HDU - 5493 题目大意:给你n个人的身高和这个人前面或者后面有多少个比他高的人,让你还原这个序列,按字典序输出. 题解: 首先按高度排序. 设每个人在其前面有k个人,设比这 ...

  4. hdu 4614 线段树

    思路:当k为1的时候,用二分法查询包含有f个空瓶的上界r,然后更新会方便很多,直接更新区间(a,r)了. #include<iostream> #include<cstdio> ...

  5. hdu4614 线段树+二分 插花

    Alice is so popular that she can receive many flowers everyday. She has N vases numbered from 0 to N ...

  6. hdu 3436 线段树 一顿操作

    Queue-jumpers Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) To ...

  7. hdu 4578 线段树(标记处理)

    Transformation Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 65535/65536 K (Java/Others) ...

  8. hdu 4267 线段树间隔更新

    A Simple Problem with Integers Time Limit: 5000/1500 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  9. hdu 3954 线段树 (标记)

    Level up Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

随机推荐

  1. P2663 越越的组队

    原题链接  https://www.luogu.org/problem/P2663 很容易看出来是个背包问题嘛: 体积是总分的一半,求最高分,每个同学选或不选,是个 01背包问题. 自信地交上去之后发 ...

  2. 7.27T2

    不可做题 sol:首先有个很显然的性质就是答案一定是在叶子上最优,然后画画图发现就是从最底层看,如果一条链就看做一个点,向上的第一颗非链的节点,它的儿子数-1就会对答案贡献,所有这样的累加起来就是答案 ...

  3. BZOJ 4732 UOJ #268 [清华集训2016]数据交互 (树链剖分、线段树)

    题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=4732 (UOJ) http://uoj.ac/problem/268 题解 ...

  4. Pwnhub Fantastic Key-一点总结

    index.php <? php error_reporting(0); include 'config.php'; $id = $_POST['i'] ? waf($_POST['i']) : ...

  5. 黑马vue---56-58、vue组件创建的三种方式

    黑马vue---56-58.vue组件创建的三种方式 一.总结 一句话总结: 不论是哪种方式创建出来的组件,组件的 template 属性指向的模板内容,必须有且只能有唯一的一个根元素 1.使用 Vu ...

  6. mysql数据库每个表的备份脚本

    对mysql数据库中的每张表进行按日期备份,思想是:先把每张表的表名取出取出,然后通过for循环去对每个表进行按日期备份 [root@ZFVM-APP-- backup]# vim dataname. ...

  7. Clock Generator PLL with Integrated VCO_ADF4360-9

    Clock Generator PLL with Integrated VCO_ADF4360-9     2和3之间需要有大于15ms的时间间隔

  8. GradientDrawable

    一个具有渐变区域的Drawable,可以实现线性渐变,发散渐变和平铺渐变效果 核心节点:<gradient/>,有如下可选属性: startColor:渐变的起始颜色 centerColo ...

  9. HTML文档的组成和标签的规范

    Html文档的组成 (1): <html></html>来明确html文档的范围 (2): <head></head>标签可以设置一个内容比如: < ...

  10. MongoDB作为windows服务来安装-2

    首先区官网下载对应版本的安装文件,我本地的环境是win7 bit64 我下载的版本是:mongodb-win32-x86_64-2.4.6 ok, 文件下载后,开始安装,这里要说一下,如果直接启动Mo ...