我们仍然使用披萨直径的价格的数据

import matplotlib
matplotlib.rcParams['font.sans-serif']=[u'simHei']
matplotlib.rcParams['axes.unicode_minus']=False
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures X_train = [[6],[8],[10],[14],[18]]
y_train = [[7],[9],[13],[17.5],[18]]
X_test = [[6],[8],[11],[16]]
y_test = [[8],[12],[15],[18]] LR = LinearRegression()
LR.fit(X_train,y_train) xx = np.linspace(0,26,100)
yy = LR.predict(xx.reshape(xx.shape[0],1))
plt.plot(xx,yy)

二阶多项式回归

# In[1] 二次回归,二阶多项式回归
#PolynomialFeatures转换器可以用于为一个特征表示增加多项式特征
quadratic_featurizer = PolynomialFeatures(degree=2)
X_train_quadratic = quadratic_featurizer.fit_transform(X_train)
X_test_quadratic = quadratic_featurizer.transform(X_test) regressor_quadratic = LinearRegression()
regressor_quadratic.fit(X_train_quadratic,y_train) xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0],1))
yy_quadratic = regressor_quadratic.predict(xx_quadratic)
plt.plot(xx,yy_quadratic,c='r',linestyle='--')
# In[2] 图参数,输出结果
plt.title("披萨价格和直径的关系")
plt.xlabel("直径")
plt.ylabel("价格")
plt.axis([0,25,0,25])
plt.grid(True)
plt.scatter(X_train,y_train) print("X_train\n",X_train)
print("X_train_quadratic\n",X_train_quadratic)
print("X_test\n",X_test)
print("X_test_quadratic\n",X_test_quadratic)
print("简单线性规划R方",LR.score(X_test,y_test))
print("二阶多项式回归R方",regressor_quadratic.score(X_test_quadratic,y_test))

X_train
[[6], [8], [10], [14], [18]]
X_train_quadratic
[[ 1. 6. 36.]
[ 1. 8. 64.]
[ 1. 10. 100.]
[ 1. 14. 196.]
[ 1. 18. 324.]]
X_test
[[6], [8], [11], [16]]
X_test_quadratic
[[ 1. 6. 36.]
[ 1. 8. 64.]
[ 1. 11. 121.]
[ 1. 16. 256.]]
简单线性规划R方 0.809726797707665

三阶多项式回归

# In[3] 尝试三阶多项式回归
cubic_featurizer = PolynomialFeatures(degree=3)
X_train_cubic = cubic_featurizer.fit_transform(X_train)
X_test_cubic = cubic_featurizer.transform(X_test) regressor_cubic = LinearRegression()
regressor_cubic.fit(X_train_cubic,y_train) xx_cubic = cubic_featurizer.transform(xx.reshape(xx.shape[0],1))
yy_cubic = regressor_cubic.predict(xx_cubic)
plt.plot(xx,yy_cubic,c='g',linestyle='--')
plt.show() print("X_train\n",X_train)
print("X_train_cubic\n",X_train_cubic)
print("X_test\n",X_test)
print("X_test_cubic\n",X_test_cubic)
print("三阶多项式回归R方",regressor_cubic.score(X_test_cubic,y_test))

X_train
[[6], [8], [10], [14], [18]]
X_train_cubic
[[1.000e+00 6.000e+00 3.600e+01 2.160e+02]
[1.000e+00 8.000e+00 6.400e+01 5.120e+02]
[1.000e+00 1.000e+01 1.000e+02 1.000e+03]
[1.000e+00 1.400e+01 1.960e+02 2.744e+03]
[1.000e+00 1.800e+01 3.240e+02 5.832e+03]]
X_test
[[6], [8], [11], [16]]
X_test_cubic
[[1.000e+00 6.000e+00 3.600e+01 2.160e+02]
[1.000e+00 8.000e+00 6.400e+01 5.120e+02]
[1.000e+00 1.100e+01 1.210e+02 1.331e+03]
[1.000e+00 1.600e+01 2.560e+02 4.096e+03]]
三阶多项式回归R方 0.8356924156036954

九阶多项式回归

# In[4] 尝试九阶多项式回归
nine_featurizer = PolynomialFeatures(degree=9)
X_train_nine = nine_featurizer.fit_transform(X_train)
X_test_nine = nine_featurizer.transform(X_test) regressor_nine = LinearRegression()
regressor_nine.fit(X_train_nine,y_train) xx_nine = nine_featurizer.transform(xx.reshape(xx.shape[0],1))
yy_nine = regressor_nine.predict(xx_nine)
plt.plot(xx,yy_nine,c='k',linestyle='--')
plt.show() print("X_train\n",X_train)
print("X_train_nine\n",X_train_nine)
print("X_test\n",X_test)
print("X_test_nine\n",X_test_nine)
print("九阶多项式回归R方",regressor_nine.score(X_test_nine,y_test))

X_train
[[6], [8], [10], [14], [18]]
X_train_nine
[[1.00000000e+00 6.00000000e+00 3.60000000e+01 2.16000000e+02
1.29600000e+03 7.77600000e+03 4.66560000e+04 2.79936000e+05
1.67961600e+06 1.00776960e+07]
[1.00000000e+00 8.00000000e+00 6.40000000e+01 5.12000000e+02
4.09600000e+03 3.27680000e+04 2.62144000e+05 2.09715200e+06
1.67772160e+07 1.34217728e+08]
[1.00000000e+00 1.00000000e+01 1.00000000e+02 1.00000000e+03
1.00000000e+04 1.00000000e+05 1.00000000e+06 1.00000000e+07
1.00000000e+08 1.00000000e+09]
[1.00000000e+00 1.40000000e+01 1.96000000e+02 2.74400000e+03
3.84160000e+04 5.37824000e+05 7.52953600e+06 1.05413504e+08
1.47578906e+09 2.06610468e+10]
[1.00000000e+00 1.80000000e+01 3.24000000e+02 5.83200000e+03
1.04976000e+05 1.88956800e+06 3.40122240e+07 6.12220032e+08
1.10199606e+10 1.98359290e+11]]
X_test
[[6], [8], [11], [16]]
X_test_nine
[[1.00000000e+00 6.00000000e+00 3.60000000e+01 2.16000000e+02
1.29600000e+03 7.77600000e+03 4.66560000e+04 2.79936000e+05
1.67961600e+06 1.00776960e+07]
[1.00000000e+00 8.00000000e+00 6.40000000e+01 5.12000000e+02
4.09600000e+03 3.27680000e+04 2.62144000e+05 2.09715200e+06
1.67772160e+07 1.34217728e+08]
[1.00000000e+00 1.10000000e+01 1.21000000e+02 1.33100000e+03
1.46410000e+04 1.61051000e+05 1.77156100e+06 1.94871710e+07
2.14358881e+08 2.35794769e+09]
[1.00000000e+00 1.60000000e+01 2.56000000e+02 4.09600000e+03
6.55360000e+04 1.04857600e+06 1.67772160e+07 2.68435456e+08
4.29496730e+09 6.87194767e+10]]
九阶多项式回归R方 -0.09435666704291412

所有代码

 

# -*- coding: utf-8 -*-
import matplotlib
matplotlib.rcParams['font.sans-serif']=[u'simHei']
matplotlib.rcParams['axes.unicode_minus']=False
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures X_train = [[6],[8],[10],[14],[18]]
y_train = [[7],[9],[13],[17.5],[18]]
X_test = [[6],[8],[11],[16]]
y_test = [[8],[12],[15],[18]] LR = LinearRegression()
LR.fit(X_train,y_train) xx = np.linspace(0,26,100)
yy = LR.predict(xx.reshape(xx.shape[0],1))
plt.plot(xx,yy) # In[1] 二次回归,二阶多项式回归
#PolynomialFeatures转换器可以用于为一个特征表示增加多项式特征
quadratic_featurizer = PolynomialFeatures(degree=2)
X_train_quadratic = quadratic_featurizer.fit_transform(X_train)
X_test_quadratic = quadratic_featurizer.transform(X_test) regressor_quadratic = LinearRegression()
regressor_quadratic.fit(X_train_quadratic,y_train) xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0],1))
yy_quadratic = regressor_quadratic.predict(xx_quadratic)
plt.plot(xx,yy_quadratic,c='r',linestyle='--') # In[2] 图参数,输出结果
plt.title("披萨价格和直径的关系")
plt.xlabel("直径")
plt.ylabel("价格")
plt.axis([0,25,0,25])
plt.grid(True)
plt.scatter(X_train,y_train) print("X_train\n",X_train)
print("X_train_quadratic\n",X_train_quadratic)
print("X_test\n",X_test)
print("X_test_quadratic\n",X_test_quadratic)
print("简单线性规划R方",LR.score(X_test,y_test))
print("二阶多项式回归R方",regressor_quadratic.score(X_test_quadratic,y_test)) # In[3] 尝试三阶多项式回归
cubic_featurizer = PolynomialFeatures(degree=3)
X_train_cubic = cubic_featurizer.fit_transform(X_train)
X_test_cubic = cubic_featurizer.transform(X_test) regressor_cubic = LinearRegression()
regressor_cubic.fit(X_train_cubic,y_train) xx_cubic = cubic_featurizer.transform(xx.reshape(xx.shape[0],1))
yy_cubic = regressor_cubic.predict(xx_cubic)
plt.plot(xx,yy_cubic,c='g',linestyle='--')
plt.show() print("X_train\n",X_train)
print("X_train_cubic\n",X_train_cubic)
print("X_test\n",X_test)
print("X_test_cubic\n",X_test_cubic)
print("三阶多项式回归R方",regressor_cubic.score(X_test_cubic,y_test)) # In[4] 尝试九阶多项式回归
nine_featurizer = PolynomialFeatures(degree=9)
X_train_nine = nine_featurizer.fit_transform(X_train)
X_test_nine = nine_featurizer.transform(X_test) regressor_nine = LinearRegression()
regressor_nine.fit(X_train_nine,y_train) xx_nine = nine_featurizer.transform(xx.reshape(xx.shape[0],1))
yy_nine = regressor_nine.predict(xx_nine)
plt.plot(xx,yy_nine,c='k',linestyle='--')
plt.show() print("X_train\n",X_train)
print("X_train_nine\n",X_train_nine)
print("X_test\n",X_test)
print("X_test_nine\n",X_test_nine)
print("九阶多项式回归R方",regressor_nine.score(X_test_nine,y_test))

scikit-learn机器学习(三)多项式回归(二阶,三阶,九阶)的更多相关文章

  1. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  2. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  3. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  4. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  5. TensorFlow 便捷的实现机器学习 三

    TensorFlow 便捷的实现机器学习 三 MNIST 卷积神经网络 Fly Overview Enabling Logging with TensorFlow Configuring a Vali ...

  6. 【机器学习】多项式回归sklearn实现

    [机器学习]多项式回归原理介绍 [机器学习]多项式回归python实现 [机器学习]多项式回归sklearn实现 使用sklearn框架实现多项式回归.使用框架更方便,可以少写很多代码. 使用一个简单 ...

  7. 【机器学习】多项式回归python实现

    [机器学习]多项式回归原理介绍 [机器学习]多项式回归python实现 [机器学习]多项式回归sklearn实现 使用python实现多项式回归,没有使用sklearn等机器学习框架,目的是帮助理解算 ...

  8. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  9. 机器学习框架Scikit Learn的学习

    一   安装 安装pip 代码如下:# wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=83 ...

随机推荐

  1. No package libmcrypt available.

    Centos安装PHP时,安装php依赖包时yum install libmcrypt libmcrypt-devel,报错如下: No package libmcrypt available. No ...

  2. idou老师教你学Istio 25:如何用istio实现监控和日志采集

    大家都知道istio可以帮助我们实现灰度发布.流量监控.流量治理等功能.每一个功能都帮助我们在不同场景中实现不同的业务.那Istio是如何帮助我们实现监控和日志采集的呢? 这里我们依然以Bookinf ...

  3. tomcat web的URL解析(web.xml)

    1.一个tomcat可以配置多个host: 2.一个host可以包含多个应用:context: 3.一个应用可以包含多个servlet:servlet-path; 4.一个servlet可以包含多个r ...

  4. Web UI开发速速种草—Kendo UI for jQuery网格编辑操作概述

    Kendo UI for jQuery最新试用版下载 Kendo UI目前最新提供Kendo UI for jQuery.Kendo UI for Angular.Kendo UI Support f ...

  5. ZrOJ #878. 小K与赞助 (网络流)

    傻逼最大费用流: . 两棵树分别流,最后汇合. CODE #include <bits/stdc++.h> using namespace std; #define pb push_bac ...

  6. 后代元素 span:first-child{...}

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  7. ckeditor不能粘贴word的问题

    在之前在工作中遇到在富文本编辑器中粘贴图片不能展示的问题,于是各种网上扒拉,终于找到解决方案,在这里感谢一下知乎中众大神以及TheViper. 通过知乎提供的思路找到粘贴的原理,通过TheViper找 ...

  8. leetcode解题报告(1):Remove Duplicates from Sorted Array

    描述 Given a sorted array, remove the duplicates in place such that each element appear only once and ...

  9. HTML学习日记 入门教程 知识点 ing

    初学html,如有错误,欢迎指正谢谢. 这只是一些基础的知识点,是学习后自己想到总结的,不适合资深者. 1.href是Hypertext Reference的缩写.意思是指定超链接目标的URL.是cs ...

  10. Devexpress GridControl中 repositoryItemCheckEdit作为选择列以及作为显示列的使用方法

    一.在gridcontrol列表控件中使用单选框作为选择列,这里有两种方式. 方式一:选择gridcontrol控件的Run Designer按钮,添加一列,设置该列的ColumnEdit为check ...