Elasticsearch Metric聚合
首先查看index文档信息
$ curl -XGET "http://172.16.101.55:9200/_cat/indices?v"
输出
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
yellow open customer DvLoM7NjSYyjTwD5BSkK3A 10mb 10mb
查看当前elasticsearch中的数据信息
$ curl -XGET "http://172.16.101.55:9200/customer/_search?pretty" -H "Content-Type: application/json" -d '{ "query": { "match_all": {} }, "sort": [ { "customerid": "desc" } ], "from": 0, "size": 1 }'
输出
{
"took" : 4,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10000,
"relation" : "gte"
},
"max_score" : null,
"hits" : [
{
"_index" : "customer",
"_type" : "_doc",
"_id" : "20000",
"_score" : null,
"_source" : {
"customerid" : 20000,
"firstname" : "WODADM",
"lastname" : "AEBUFMJAWZ",
"address1" : "6224597470 Dell Way",
"address2" : null,
"city" : "DVCINXG",
"state" : null,
"zip" : 0,
"country" : "Australia",
"region" : 2,
"email" : "AEBUFMJAWZ@dell.com",
"phone" : "6224597470",
"creditcardtype" : 3,
"creditcard" : "1869697669055313",
"creditcardexpiration" : "2010/07",
"username" : "user20000",
"password" : "password",
"age" : 37,
"income" : 40000,
"gender" : "F"
},
"sort" : [
20000
]
}
]
}
}
avg:求平均值
$ curl -XGET "http://172.16.101.55:9200/customer/_search?pretty" -H "Content-Type: application/json" -d '{ "size": 0, "aggs": { "avg_age": { "avg": { "field": "age" } } } }'
输出
{
"took" : 4,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10000,
"relation" : "gte"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"avg_age" : {
"value" : 53.88315
}
}
}
min:求最小值
$ curl -XGET "http://172.16.101.55:9200/customer/_search?pretty" -H "Content-Type: application/json" -d '{ "size": 0, "aggs": { "avg_age": { "min": { "field": "age" } } } }'
输出
{
"took" : 4,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10000,
"relation" : "gte"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"avg_age" : {
"value" : 18.0
}
}
}
max:求最大值
$ curl -XGET "http://172.16.101.55:9200/customer/_search?pretty" -H "Content-Type: application/json" -d '{ "size": 0, "aggs": { "avg_age": { "max": { "field": "age" } } } }'
输出
{
"took" : 4,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10000,
"relation" : "gte"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"avg_age" : {
"value" : 90.0
}
}
}
cardinality:去重
$ curl -XGET "http://172.16.101.55:9200/customer/_search?pretty" -H "Content-Type: application/json" -d '{ "size": 0, "aggs": { "cardinality_country": { "cardinality": { "field": "country", "precision_threshold" : 100 } } } }'
注:precision_threshold选项表名我们确保当字段唯一值在 100 以内时会得到非常准确的结果
输出
{
"took" : 5,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10000,
"relation" : "gte"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"cardinality_country" : {
"value" : 12
}
}
}
geo bounds:空间索引
新建图书馆索引
$ curl -XPUT "http://172.16.101.55:9200/museums?pretty" -H "Content-Type: application/json" -d '{ "mappings": { "properties": { "location": { "type": "geo_point"} } } }'
输出
{
"acknowledged" : true,
"shards_acknowledged" : true,
"index" : "museums"
}
查看索引信息
$ curl -XGET "http://172.16.101.55:9200/museums?pretty"
输出
{
"museums" : {
"aliases" : { },
"mappings" : {
"properties" : {
"location" : {
"type" : "geo_point"
}
}
},
"settings" : {
"index" : {
"creation_date" : "",
"number_of_shards" : "",
"number_of_replicas" : "",
"uuid" : "91Br4WhVRZSLlZgpu8dihA",
"version" : {
"created" : ""
},
"provided_name" : "museums"
}
}
}
}
上传测试数据
$ cat geo.json
{"index":{"_id":}}
{"location": "52.374081,4.912350", "name": "NEMO Science Museum"}
{"index":{"_id":}}
{"location": "52.369219,4.901618", "name": "Museum Het Rembrandthuis"}
{"index":{"_id":}}
{"location": "52.371667,4.914722", "name": "Nederlands Scheepvaartmuseum"}
{"index":{"_id":}}
{"location": "51.222900,4.405200", "name": "Letterenhuis"}
{"index":{"_id":}}
{"location": "48.861111,2.336389", "name": "Musée du Louvre"}
{"index":{"_id":}}
{"location": "48.860000,2.327000", "name": "Musée d'Orsay"}
$ curl -H "Content-Type: application/json" -XPOST "http://172.16.101.55:9200/museums/_bulk?pretty&refresh" --data-binary "@geo.json"
查看
$ curl -XPOST "http://172.16.101.55:9200/museums/_search?pretty" -H "Content-Type: application/json" -d '{ "size":0, "query": {"match" : { "name" : "musée" } }, "aggs": {"viewport": {"geo_bounds": {"field": "location", "wrap_longitude": true } } } }'
输出
{
"took" : 4,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 2,
"relation" : "eq"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"viewport" : {
"bounds" : {
"top_left" : {
"lat" : 48.86111099738628,
"lon" : 2.3269999679178
},
"bottom_right" : {
"lat" : 48.85999997612089,
"lon" : 2.3363889567553997
}
}
}
}
}
Percentiles:求一个numberic类型的文档范围占总文档的百分比
查看
$ curl -XGET "http://172.16.101.55:9200/customer/_search?pretty" -H "Content-Type: application/json" -d '{ "size": 0, "aggs": { "percentiles_age": { "percentiles": { "field": "age" } } } }'
输出
{
"took" : ,
"timed_out" : false,
"_shards" : {
"total" : ,
"successful" : ,
"skipped" : ,
"failed" :
},
"hits" : {
"total" : {
"value" : ,
"relation" : "gte"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"percentiles_age" : {
"values" : {
"1.0" : 18.0,
"5.0" : 21.0,
"25.0" : 35.543352601156066,
"50.0" : 54.0,
"75.0" : 72.0,
"95.0" : 87.0,
"99.0" : 90.0
}
}
}
}
说明:年龄小于等于18岁的文档数占总文档数为1%,年龄小于等于54岁的文档数占总文档数小于等于50%
默认的范围为[ 1, 5, 25, 50, 75, 95, 99 ],我们可以自定义
$ curl -XGET "http://172.16.101.55:9200/customer/_search?pretty" -H "Content-Type: application/json" -d '{ "size": 0, "aggs": { "percentiles_age": { "percentiles": { "field": "age", "percents": [30, 50, 90] } } } }'
输出
{
"took" : ,
"timed_out" : false,
"_shards" : {
"total" : ,
"successful" : ,
"skipped" : ,
"failed" :
},
"hits" : {
"total" : {
"value" : ,
"relation" : "gte"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"percentiles_age" : {
"values" : {
"30.0" : 39.123456790123456,
"50.0" : 54.0,
"90.0" : 83.0
}
}
}
}
Percentile rank:查看给定范围内的文档值占总文档比例
查看年龄小于等于30和年龄小于等于50的文档比例
$ curl -XGET "http://172.16.101.55:9200/customer/_search?pretty" -H "Content-Type: application/json" -d '{ "size": 0, "aggs": { "percentiles_rank_age": { "percentile_ranks": { "field": "age", "values": [30, 50], "keyed": "false" } } } }'
输出
{
"took" : ,
"timed_out" : false,
"_shards" : {
"total" : ,
"successful" : ,
"skipped" : ,
"failed" :
},
"hits" : {
"total" : {
"value" : ,
"relation" : "gte"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"percentiles_rank_age" : {
"values" : [
{
"key" : 30.0,
"value" : 17.395
},
{
"key" : 50.0,
"value" : 45.0
}
]
}
}
}
in, max, sum, count and avg$ curl -XGET "http://172.16.101.55:9200/customer/_search?pretty" -H "Content-Type: application/json" -d '{ "size": 0, "aggs": { "stats_age": { "stats": { "field": "age" } } } }'
输出
{
"took" : ,
"timed_out" : false,
"_shards" : {
"total" : ,
"successful" : ,
"skipped" : ,
"failed" :
},
"hits" : {
"total" : {
"value" : ,
"relation" : "gte"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"stats_age" : {
"count" : ,
"min" : 18.0,
"max" : 90.0,
"avg" : 53.88315,
"sum" : 1077663.0
}
}
}
Elasticsearch Metric聚合的更多相关文章
- Elasticsearch(8) --- 聚合查询(Metric聚合)
Elasticsearch(8) --- 聚合查询(Metric聚合) 在Mysql中,我们可以获取一组数据的 最大值(Max).最小值(Min).同样我们能够对这组数据进行 分组(Group).那么 ...
- ElasticSearch实战系列五: ElasticSearch的聚合查询基础使用教程之度量(Metric)聚合
Title:ElasticSearch实战系列四: ElasticSearch的聚合查询基础使用教程之度量(Metric)聚合 前言 在上上一篇中介绍了ElasticSearch实战系列三: Elas ...
- Elasticsearch(9) --- 聚合查询(Bucket聚合)
Elasticsearch(9) --- 聚合查询(Bucket聚合) 上一篇讲了Elasticsearch聚合查询中的Metric聚合:Elasticsearch(8) --- 聚合查询(Metri ...
- Elasticsearch 之聚合分析入门
本文主要介绍 Elasticsearch 的聚合功能,介绍什么是 Bucket 和 Metric 聚合,以及如何实现嵌套的聚合. 首先来看下聚合(Aggregation): 什么是 Aggregati ...
- Elasticsearch系列---聚合查询原理
概要 本篇主要介绍聚合查询的内部原理,正排索引是如何建立的和优化的,fielddata的使用,最后简单介绍了聚合分析时如何选用深度优先和广度优先. 正排索引 聚合查询的内部原理是什么,Elastich ...
- ElasticSearch 的 聚合(Aggregations)
Elasticsearch有一个功能叫做 聚合(aggregations) ,它允许你在数据上生成复杂的分析统计.它很像SQL中的 GROUP BY 但是功能更强大. Aggregations种类分为 ...
- ElasticSearch - 信息聚合系列之聚合过滤
摘要 聚合范围限定还有一个自然的扩展就是过滤.因为聚合是在查询结果范围内操作的,任何可以适用于查询的过滤器也可以应用在聚合上. 版本 elasticsearch版本: elasticsearch-2. ...
- (转)Elasticsearch分析聚合
Elasticsearch不仅仅适合做全文检索,分析聚合功能也很好用.下面通过实例来学习. 一.准备数据 {"index":{ "_index": " ...
- Elasticsearch学习(4) spring boot整合Elasticsearch的聚合操作
之前已将spring boot原生方式介绍了,接下将结介绍的是Elasticsearch聚合操作.聚合操作一般来说是解决一下复杂的业务,比如mysql中的求和和分组,由于博主踩的坑比较多,所以博客可能 ...
随机推荐
- hdu 5532 Almost Sorted Array nlogn 的最长非严格单调子序列
Almost Sorted Array Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Ot ...
- Gym 100971D 单调栈
D - Laying Cables Time Limit:2000MS Memory Limit:262144KB 64bit IO Format:%I64d & %I64u ...
- jQuery事件之自定义事件
其实事件的bind和unbind,都是为了自定义事件做准备. 语法: $(selector).trigger(type, data); 作用:在每一个匹配的元素上触发某类事件,它触发的是由bind() ...
- Keras学习笔记三:一个图像去噪训练并离线测试的例子,基于mnist
训练模型需要的数据文件有: MNIST_data文件夹下的mnist_train.mnist_test.noisy_train.noisy_test.train文件夹下60000个图片,test下10 ...
- Linux停止被占用的端口
查找被占用的端口:netstat -lnp|grep 80 查看80端口被那些服务占用. kill掉该进程 kill -9 5574 然后在去查看一下80被占用的情况netstat -lnp|grep ...
- leetcode题目4.寻找两个有序数组的中位数(困难)
题目描述: 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2. 请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n)). 你可以假设 nums1 和 ...
- koa 基础(二十二)封装 DB 库 --- 测试
1.根目录/module/config.js /** * 配置文件 */ var app = { dbUrl: 'mongodb://127.0.0.1:27017/?gssapiServiceNam ...
- char能不能存储一个汉字
答案是肯定的 请参见博客:https://www.cnblogs.com/1017hlbyr/p/6419016.html
- springboot非web项目
使用CommandRunner @SpringBootApplication public class CrmApplication implements ApplicationRunner { @A ...
- ceph-----常用命令
#查看存储池 ceph osd lspools #设置存储池副本数 ceph osd pool set data size 3 #查看存储池具体信息 ceph osd pool ls detail # ...