[LGP4707] 重返现世
世界是物质的,物质是运动的,运动是有规律的,规律是可以被认识的。
关于期望意义下min-max容斥,我们认为每个事件的时间来认识事件,max/min S表示集合S中所有时间最后/最前出现的事件,E(max/min S)表示事件max/min S首次发生的期望时间。这样,仿照普通min-max容斥的推导可得
\]
同理的kth-max-min也成立
\]
而对于\(E(\min S)\)我们有
E(\max_k S)=\sum_{T\subseteq S}(-1)^{|T|-k}\binom{|T|-1}{k-1}\frac1{\sum_{e\in T}P(e)}
\]
赞美太阳,重返现世。
我们求的是收集到任意k种,所以
k\Leftarrow n-k+1
\]
考虑由前\(i\)种时间构成的集合\(S_i\),计算其\(E(\max_k S_i)\)时记\(f[i,j,k]\)为满足\(T\in S_i, \sum_{e\in T}P(e)=j\)的系数和,即
\]
显然最终答案
\]
由于题目规定\(P(x)=\frac{P_x}m\),则\(E(x)=\frac{m}{P_x}\),最后将\(m\)单独乘入即可。
再考虑dp的转移,决策是事件\(i\)的加入对系数的影响
=f[i-1,j,k]+\sum_{... i\in T} (-1)^{|T-k|}(\binom{|T|-2}{k-1}+\binom{|T|-2}{k-2})\\
=f[i-1,j,k]+\sum_{... i\in T} (-1)^{|T-k|}\binom{|T|-2}{k-1}+\sum_{... i\in T} (-1)^{|T-k|}\binom{|T|-2}{k-2}\\
=f[i-1,j,k]-f[i-1,j-P_i,k]+f[i-1,j-P_i,k-1]\\
\]
于是暴力做就行了。
#include <bits/stdc++.h>
#define IL inline
#define ll long long
using namespace std;
const int N=1e3+10;
const int M=1e4+10;
const int mod=998244353;
int n,K,m,p[N],s[N];
int ans,inv[M],f[2][M][12];
int main() {
scanf("%d%d%d",&n,&K,&m); K=n-K+1;
for(int i=1; i<=n; ++i) {
scanf("%d",p+i);
s[i]=s[i-1]+p[i];
}
f[0][0][0]=1;
for(int i=1; i<=n; ++i) {
memset(f[i&1],0,sizeof f[0]);
auto F=f[i&1],G=f[(i&1)^1];
F[0][0]=1;
for(int j=1; j<p[i]; ++j)
for(int k=1; k<=K; ++k)
F[j][k]=G[j][k];
for(int j=p[i]; j<=s[i]; ++j)
for(int k=1; k<=K; ++k)
F[j][k]=(G[j][k]+(mod-G[j-p[i]][k]+G[j-p[i]][k-1])%mod)%mod;
}
inv[1]=1;
for(int i=1; i<=m; ++i) {
if(i>1) inv[i]=(ll)inv[mod%i]*(mod-mod/i)%mod;
ans=(ans+(ll)f[n&1][i][K]*inv[i]%mod*m%mod)%mod;
}
printf("%d\n",ans);
return 0;
}
[LGP4707] 重返现世的更多相关文章
- 【Luogu4707】重返现世(min-max容斥)
[Luogu4707]重返现世(min-max容斥) 题面 洛谷 求全集的\(k-max\)的期望 题解 \(min-max\)容斥的证明不难,只需要把所有元素排序之后考虑组合数的贡献,容斥系数先设出 ...
- 洛谷 P4707 重返现世
洛谷 P4707 重返现世 k-minimax容斥 有这一个式子:\(E(\max_k(S))=\sum_{T\subseteq S}(-1)^{|T|-k}C_{|T|-1}^{k-1}\min(T ...
- Luogu P4707 重返现世
题目描述 为了打开返回现世的大门,Yopilla 需要制作开启大门的钥匙.Yopilla 所在的迷失大陆有 \(n\) 种原料,只需要集齐任意 \(k\) 种,就可以开始制作. Yopilla 来到了 ...
- [洛谷P4707] 重返现世
Description 为了打开返回现世的大门,\(Yopilla\) 需要制作开启大门的钥匙.\(Yopilla\) 所在的迷失大陆有 \(n\) 种原料,只需要集齐任意 \(k\) 种,就可以开始 ...
- luoguP4707 重返现世
收集邮票加强版,每个邮票不是等概率获得的了. 而且是获得K个,如果把一个全集S集合找出其获得时间集合(显然获得时间两两不同)的话,那么就是第n-k+1大的期望! %%%Sooke min-max容斥扩 ...
- 洛谷P4707 重返现世 [DP,min-max容斥]
传送门 前置知识 做这题前,您需要认识这个式子: \[ kthmax(S)=\sum_{\varnothing\neq T\subseteq S}{|T|-1\choose k-1} (-1)^{|T ...
- 洛谷 P4707 【重返现世】
题目分析 题目就是求第K种原料的出现期望时间. 考虑广义min-max容斥. \(\text{kthmax}(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-k}\bin ...
- 【题解】洛谷P4707重返现世
在跨年的晚上玩手机被妈妈骂了赶来写题……呜呜呜……但是A题了还是很开心啦,起码没有把去年的题目留到明年去做ヾ(◍°∇°◍)ノ゙也祝大家2019快乐! 这题显然的 kth min-max 容斥就不说了, ...
- 洛谷P4707 重返现世(扩展MinMax容斥+dp)
传送门 我永远讨厌\(dp.jpg\) 前置姿势 扩展\(Min-Max\)容斥 题解 看纳尔博客去→_→ 咱现在还没搞懂为啥初值要设为\(-1\)-- //minamoto #include< ...
随机推荐
- rabbitmq权限细分二
禁止用户远程登录 主要有以下几步 1.进入容器 docker exec -it ID /bin/bash 2.打开配置文件 vi /etc/rabbitmq/rabbitmq.conf 3.加入配置, ...
- 【零基础】speech driven animation中文安装使用指南
注:原项目名叫Speech-Driven Animation,所以我这里就简称为SDA 开局一张图,后面自动编 相信前段时间爆火的DeepNude(AI扒衣)让很多人惊掉了大牙,AI还能干这个?!如果 ...
- CNN中感受野大小的计算
1 感受野的概念 从直观上讲,感受野就是视觉感受区域的大小.在卷积神经网络中,感受野的定义是 卷积神经网络每一层输出的特征图(feature map)上的像素点在原始图像上映射的区域大小. 2 感受野 ...
- Docker镜像搭建ubuntu下samba目录共享
第一种方法:(未使用) yum install docker // 下载镜像 docker pull dperson/samba // 启动镜像,具体看文档,但重要的配置是以下的注释 docker r ...
- go module 使用举例
go语言中,从1.11开始,引入module,进行版本管理. 通过使用module,工程目录的位置不用必须放在GOPATH下. 本文介绍 module的使用. 下文中用的Go版本是1.13. 1. g ...
- LC 957. Prison Cells After N Days
There are 8 prison cells in a row, and each cell is either occupied or vacant. Each day, whether the ...
- 【11】ajax请求后台接口数据与返回值处理js写法
$.ajax({ url: "/test.php",//后台提供的接口 type: "post", //请求方式是post data:{"type ...
- Kettle源码学习(一)——把Kettle项目跑起来
kettle(pentaho data integration),是一款开源的C/S版的ETL工具,最近打算学习一下kettle源码,并自己写一个mini kettle,并改造成基于事件触发的流处理模 ...
- HDFS的基础与操作
一 HDFS概念 1.1 概念 HDFS,它是一个文件系统,全称:Hadoop Distributed File System,用于存储文件通过目录树来定位文件:其次,它是分布式的,由很多服务器联合起 ...
- java+ueditor word粘贴上传
最近公司做项目需要实现一个功能,在网页富文本编辑器中实现粘贴Word图文的功能. 我们在网站中使用的Web编辑器比较多,都是根据用户需求来选择的.目前还没有固定哪一个编辑器 有时候用的是UEditor ...