Hdu-1565 方格取数(1) (状态压缩dp入门题
方格取数(1)
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4702 Accepted Submission(s): 1782
从中取出若干个数,使得随意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,而且取出的数的和最大。
3
75 15 21
75 15 28
34 70 5
188
入门压缩dp,与
Poj - 3254 Corn Fields
类似。
用dp[i][j]表示前i行,第i行选第j种状态时的最优解。
首先找出全部本行不冲突的状态(即这一行中没有相邻的情况),存入state数组
计算出第i行取第j种状态时可得到的数值stn[i][j]
那么dp[i][j]=max{dp[i][j],dp[i-1][k]+stn[i][j]}
(k表示第i-1行取第k种状态
终于答案即为dp[n][j]中的最大值。
代码:
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int hpn=18000;
int state[hpn],stn[25][hpn],dp[25][hpn];
//dp[i][j]:前i行,第i行选第j种状态时的最优解
int mst,map[25][25];//第i行选第j种状态时的值 inline int bet(int x,int y)
{
if(x>y) return x;
return y;
} void find_all_state(int n)
{
memset(state,0,sizeof(state));
mst=0;//最多有多少种状态
int lin=(1<<n),index=1;
for(int i=0;i<lin;++i)
{
if((i&(i<<1))==0)
{
state[index]=i;
++mst;
++index;
}
}
} int main()
{
int n;
while(cin>>n)
{
if(n==0)
{
cout<<0<<endl;
continue;
}
find_all_state(n); for(int i=1;i<=n;++i)
{
for(int j=1;j<=n;++j)
{
scanf("%d",&map[i][j]);
}
} memset(stn,0,sizeof(stn));
for(int i=1;i<=n;++i)
{
for(int j=1;j<=mst;++j)
{
int b=n;
for(int t=1;t<(1<<n);t=(t<<1))
{
if((t&state[j])!=0)
{
stn[i][j]+=map[i][b];
}
--b;
}
}
}//统计第i行选第j种状态时可得到的值 memset(dp,0,sizeof(dp));
for(int i=1;i<=mst;++i)//第一行取第i种状态时
{
dp[1][i]=stn[1][i];
}
for(int i=2;i<=n;++i)//对于第i行
{
for(int j=1;j<=mst;++j)//取第j种状态
{
for(int k=1;k<=mst;++k)//第i-1行取第k种状态
{
if((state[j]&state[k])!=0) continue;
dp[i][j]=bet(dp[i][j],dp[i-1][k]+stn[i][j]);
}
}
} int ans=0;
for(int i=1;i<=mst;++i)
{
ans=bet(ans,dp[n][i]);
} cout<<ans<<endl;
}
return 0;
}
Hdu-1565 方格取数(1) (状态压缩dp入门题的更多相关文章
- hdu 1565 方格取数(1) 状态压缩dp
方格取数(1) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- HDU 1565 - 方格取数(1) - [状压DP][网络流 - 最大点权独立集和最小点权覆盖集]
题目链接:https://cn.vjudge.net/problem/HDU-1565 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32 ...
- HDU1565 方格取数(1)(状态压缩dp)
题目链接. 分析: 说这题是状态压缩dp,其实不是,怎么说呢,题目数据太水了,所以就过了.手动输入n=20的情况,超时.正解是网络流,不太会. A这题时有个细节错了,是dp[i][j]还是dp[i][ ...
- 网络流(最大流) HDU 1565 方格取数(1) HDU 1569 方格取数(2)
HDU 1565 方格取数(1) 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的 ...
- HDU 1565 方格取数(1) 轮廓线dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others) ...
- hdu 1565 方格取数(1)(状态压缩dp)
方格取数(1) Time Limit: 10000/5000 MS (J ...
- hdu 2167 方格取数 【状压dp】(经典)
<题目链接> 题目大意: 给出一些数字组成的n*n阶矩阵,这些数字都在[10,99]内,并且这个矩阵的 3<=n<=15,从这个矩阵中随机取出一些数字,在取完某个数字后,该数 ...
- 状态压缩DP入门题
. /*本题为状态压缩题 题目大意 : 一个矩阵里有很多格子,每个格子有两种状态,可以放牧和不可以放牧, 可以放牧用1表示,否则用0表示,在这块牧场放牛,要求两个相邻的方 格不能同时放牛(不包括斜着的 ...
- HDU 1565 方格取数(简单状态压缩DP)
http://acm.hdu.edu.cn/showproblem.php?pid=1565 对于每一个数,取或者不取,用0表示不取,1表示取,那么对于每一行的状态,就可以用一个二进制的数来表示.比如 ...
随机推荐
- VK Cup 2016 - Qualification Round 1——B. Chat Order(试手stack+map)
B. Chat Order time limit per test 3 seconds memory limit per test 256 megabytes input standard input ...
- HDU——1799循环多少次(杨辉三角/动态规划/C(m,n)组合数)
循环多少次? Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Sub ...
- HDU-1853 Cyclic Tour
最小权值环覆盖问题:用几个环把所有点覆盖,求所选取的边最小的权值之和. 拆点思想+求最小转求最大+KM算法 #include <cstdlib> #include <cstdio&g ...
- 兼容ie8 rgba()写法
background: rgba(255,255,255,.1); filter:progid:DXImageTransform.Microsoft.gradient(startColorstr=#1 ...
- [JSOI2016] 最佳团队 (树形DP+01分数规划)
Description JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号. 每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY ...
- 最短Hamilton路径-状压dp解法
最短Hamilton路径 时间限制: 2 Sec 内存限制: 128 MB 题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamil ...
- spoj 7001 Visible Lattice Points莫比乌斯反演
Visible Lattice Points Time Limit:7000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Su ...
- 病毒(bzoj 2938)
Description 二进制病毒审查委员会最近发现了如下的规律:某些确定的二进制串是病毒的代码.如果某段代码中不存在任何一段病毒代码,那么我们就称这段代码是安全的.现在委员会已经找出了所有的病毒代码 ...
- 卡牌游戏(bzoj 3191)
Description N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字 ...
- linux 程序自动运行总结
1.开机启动时自动运行程序Linux加载后, 它将初始化硬件和设备驱动, 然后运行第一个进程init.init根据配置文件继续引导过程,启动其它进程.通常情况下,修改放置在 /etc/rc或 /etc ...