【数论分块】bzoj2956: 模积和
数论分块并不精通……第一次调了一个多小时才搞到60pts;因为不会处理i==j的情况,只能枚举了……
Description
$\sum_{i=1}^{n}\sum_{j=1 \land i \not = j}^{m}(n\ mod\ i)(m\ mod\ j)$
Input
第一行两个数n,m。
Output
一个整数表示答案mod 19940417的值
Sample Input
Sample Output
样例说明
数据规模和约定
30%: n,m <= 1000
60%: n,m <= 10^6
100% n,m <= 10^9
题目分析
我们有
$原式=\sum_{i=1}^{n}\sum_{j=1}^{m}(n-{\left \lfloor \frac{n}{i} \right \rfloor}i)(m-{\left \lfloor \frac{m}{j} \right \rfloor}j)-\sum_{i=1}^{min(n,m)}(n-{\left \lfloor \frac{n}{i} \right \rfloor}i)(m-{\left \lfloor \frac{m}{i} \right \rfloor}i)$
$=\sum_{i=1}^{n}(n-{\left \lfloor \frac{n}{i} \right \rfloor}i)\sum_{j=1}^{m}(m-{\left \lfloor \frac{m}{j} \right \rfloor}j)-\sum_{i=1}^{min(n,m)}(nm+{\left \lfloor \frac{n}{i} \right \rfloor}{\left \lfloor \frac{m}{i} \right \rfloor}i^2-(m{\left \lfloor \frac{n}{i} \right \rfloor}+n{\left \lfloor \frac{m}{i} \right \rfloor})i)$
化出来的后一项$\sum_{i=1}^{min(n,m)}(nm+{\left \lfloor \frac{n}{i} \right \rfloor}{\left \lfloor \frac{m}{i} \right \rfloor}i^2-(m{\left \lfloor \frac{n}{i} \right \rfloor}+n{\left \lfloor \frac{m}{i} \right \rfloor})i)$不是很常规。但注意到$\left \lfloor \frac{n}{i} \right \rfloor$和$\left \lfloor \frac{m}{i} \right \rfloor$都是单调的,那么就可以从小到大枚举的时候顺带取一个min来做。这样的复杂度就是$O(\sqrt n+\sqrt m)$的了。
大概是这样的:

早上被这最后一步卡住了……
然后就是一些细节上注意取模
#include<bits/stdc++.h>
typedef long long ll;
const int MO = ;
const int inv6 = ; ll n,m,ans,del; inline void Add(ll &x, ll y){x = ((x+y)%MO+MO)%MO;}
ll sum(ll x){return x*(x+)%MO*(*x+)%MO*inv6%MO;}
ll calc(ll x)
{
ll ret = ;
for (ll i=, j=; i<=x; i=j+)
{
j = x/(x/i);
Add(ret, 1ll*(x/i)*(i+j)*(j-i+)/%MO);
}
return ((x%MO*x%MO-ret)+MO)%MO;
}
int main()
{
scanf("%lld%lld",&n,&m);
if (n > m) std::swap(n, m);
ans = calc(n)*calc(m)%MO;
del = n*m%MO*n%MO;
for (ll i=, j=; i<=n; i=j+)
{
j = std::min(n/(n/i), m/(m/i));
ll s1 = (sum(j)-sum(i-))*(n/i)%MO*(m/i)%MO;
ll s2 = (n*(m/i)%MO+m*(n/i)%MO)%MO*((i+j)*(j-i+)/%MO);
Add(del, (s1-s2)%MO);
}
Add(ans, -del);
printf("%lld\n",ans);
return ;
}
END
【数论分块】bzoj2956: 模积和的更多相关文章
- BZOJ2956: 模积和
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...
- BZOJ2956: 模积和(数论分块)
题意 题目链接 Sol 啊啊这题好恶心啊,推的时候一堆细节qwq \(a \% i = a - \frac{a}{i} * i\) 把所有的都展开,直接分块.关键是那个\(i \not= j\)的地方 ...
- BZOJ2956: 模积和——整除分块
题意 求 $\sum_{i=1}^n \sum_{j=1}^m (n \ mod \ i)*(m \ mod \ j)$($i \neq j$),$n,m \leq 10^9$答案对 $1994041 ...
- bzoj2956: 模积和(数论)
先算出无限制的情况,再减去i==j的情况. 无限制的情况很好算,有限制的情况需要将式子拆开. 注意最后的地方要用平方和公式,模数+1是6的倍数,于是逆元就是(模数+1)/6 #include<i ...
- ACM学习历程—BZOJ2956 模积和(数论)
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...
- 【数论分块】[BZOJ2956、LuoguP2260] 模积和
十年OI一场空,忘记取模见祖宗 题目: 求$$\sum_{i=1}^{n}\sum_{j=1}^{m} (n \bmod i)(m \bmod i)$$ (其中i,j不相等) 暴力拆式子: $$ANS ...
- 【BZOJ2956】模积和 分块
[BZOJ2956]模积和 Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m ...
- 【bzoj2956】模积和 数论
题目描述 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. 输入 第一行两个数n,m. 输出 一个整数表示答案mod 1994041 ...
- BZOJ 2956 模积和 (数学推导+数论分块)
手动博客搬家: 本文发表于20170223 16:47:26, 原地址https://blog.csdn.net/suncongbo/article/details/79354835 题目链接: ht ...
随机推荐
- How to install your SSL Certificate to your Windows Server
Installation: Open the ZIP file containing your certificate. Save the file named your_domain_name.ce ...
- python爬虫——web前端基础(2)
图像标记------->>>> <img>图像标记,用来在网页中显示图像.使用方法为:<img src="路径/文件名.图片格式" wi ...
- Nacos深入浅出(六)
其实我们发现在我们本地新生成了文件,这个文件就是nacos; 这个文件怎么那么眼熟,不就是我们的controller中的注解里面的参数value么: @Controller @NacosPropert ...
- sublime安装与使用
整理sublime的安装和使用的步骤,以及一些常用插件的安装.配置.使用.免得每次换环境都需要重新上网查找一堆资料. 前言目前使用的版本是sublime text3.选择sublime的理由 subl ...
- mac 增加/usr/bin目录的操作无权限
起因:想要往/usr/bin目录下拷贝文件,提示: operation not permitted 解决办法: 1. 重启,启动中长安command+r进入恢复模式 2.顶部菜单拉中打开终端 3. 输 ...
- String 中配置文件详解
<context:component-scan>使用说明 http://blog.csdn.net/chunqiuwei/article/details/16115135
- 055 Jump Game 跳跃游戏
给定一个非负整数数组,您最初位于数组的第一个索引处.数组中的每个元素表示您在该位置的最大跳跃长度.确定是否能够到达最后一个索引.示例:A = [2,3,1,1,4],返回 true.A = [3,2, ...
- java类在eclipse上打jar包,Linux上成功运行的实例
1 eclipse下的java项目结构如下图所示: 2 打包的步骤如下: 3 修改minifest.mf文件: 4 .上传需要的三方jar包们和主类打的jar(案例是topV.jar)并且执行jav ...
- 宝塔面板安装的mysql5.5用命令行kill -9后启动不了
1.查看mysql版本方法一:status;方法二:select version(); 2.Mysql启动.停止.重启常用命令a.启动方式1.使用 service 启动:[root@localhost ...
- es6+字符串string的新增方法函数
String.includes("xxx") 返回true/false [es5的字符串查找方法:String.indexOf() ] String.startsWit ...