基于灰度均值分布的目标跟踪!

http://blog.csdn.net/wds555/article/details/24499599

但他有些有点:

1.不会受遮挡太多影响

Mean Shift跟踪从2000年被提出至今已经经历了十余个年头,从被大量灌水到如今不屑被拿来作为比较算法,经历了辉煌高潮的 Mean-Shift based Tracking正在慢慢淡出主流tracking研究的视线。但是,作为一种轻量级、易实现的算法,用它作为视觉跟踪研究的入门还是相当推荐的。

本文回顾Mean Shift跟踪从提出、发展至当前“停滞”状态过程中出现的一些经典论文,旨在为后续学习者提供一份还不错的reading list。希望通过阅读以下文章,快速了解Mean Shift跟踪发展的几个方向,以及视觉跟踪将应对的几个难点。下文中不会对Mean Shift跟踪进行原理性讲解,试图通过本文了解算法原理的读者请自行绕道。

当然,首当其冲是Dorin Comaniciu提出Mean Shift跟踪的两篇文章(会议论文和对应的期刊):

[1] Dorin Comaniciu, Visvanathan Ramesh, Peter Meer. Real-Time Tracking of Non-Rigid Objects Using Mean Shift. CVPR, 2000.

[2] Dorin Comaniciu, Visvanathan Ramesh, Peter Meer.Kernel-based object tracking. TPAMI, 2003.

在Dorin Comaniciu挖下这个大坑后,随后国内外无数研究者争相往其中灌水。以下挖掘了几篇论文作为后续研究的代表。

空间颜色直方图作为目标表观,然后在MS tracking框架下得到改进的算法:

[3] S.T Birchfield, Sriram Rangarajan. Spatiograms versus histograms for region-based tracking. CVPR, 2005

 spatiogram, nb表示颜色(直方图)索引为b的像素数量,ub和∑b分别表示对应像素点空间分布的均值和协方差矩阵

histogram:

尺度自适应一直是跟踪算法的难点,在Mean Shift跟踪中解决尺度问题一般从推导过程进入,所以这类文章的数学推导略难:(也有些方法是借用一些“外部”手段,比如特征点的提取-匹配来获得尺度信息)

[4] Robert T. Collins. Mean-shift blob tracking through scale space. CVPR, 2003.

[5] Zoran Zivkovic, Ben Krose. An Em-like algorithm for color-histogram-based object tracking. CVPR, 2004.

[补充Tomas Vojir, Jana Noskova, and Jiri Matas.Robust Scale-adaptive Mean-Shift for Tracking. SCIA 2013. (best paper) (论文几乎破纪录地在40+段视频上与TLD在内的几个Tracking-by-detection方法进行了对比,报道效果还是比较让人意外的)

目标表观的多特征选择(这也是篇高引用的论文,很多人将它视为Online learning for tracking的开端):

[6] Robert T. Collins, Yanxi Liu, Marius Leordeanu.Online Selection of Discriminative Tracking Features. TPAMI, 2005.

下图表示目标在不同颜色特征描述下与背景的区分度

目标分块,以适应遮挡的情况:

[7] J. Jeyakar, R.V. Babu, K.R. Ramakrishnan. Robust object tracking with background-weighted local kernels. CVIU, 2008.

目标直方图的更新,与经典的线性加权不同,下文使用了Kalman filter对每个bin进行滤波更新:

[8] Peng NingSong, Yang Jie, Liu Zhi. Mean Shift blob tracking with kernel histogram filtering and hypothesis testing. Pattern Recognition Letters, 2005.

目标多特征,这里推荐两篇中文文献。一类只考虑候选模板(直方图)与参考的相似度,另一类考虑与背景的鉴别性来调整特征权重(以下两篇都属于后者):

[9] 王永忠,梁彦,赵春晖等.基于多特征自适应融合的核跟踪方法.自动化学报,  2008.

[10] 袁广林, 薛模根,韩裕生等.基于自适应多特征融合的Mean Shift目标跟踪.计算机研究与发展, 2010.

快速移动目标:

[11] Chunhua Shen, Brooks M.J, van den Hengel A. Fast Global Kernel Density Mode Seeking: Applications to Localization and Tracking. TIP, 2007.

[12] Li ShuXiao, Chang HongXing, Zhu ChengFei. Adaptive pyramid mean shift for global real-time visual tracking. Image and Vision Computing, 2010.

[补充] Shu-Xiao Li, Ou Wu, Cheng-Fei Zhu, and et al. Visual Object Tracking using Spatial Context Information and Global Tracking Skills. CVIU, 2014. (作者提出一种观点:precise model + less precise candidate enclosing the object. 通过增加candidate model覆盖的图像范围来使weight image的显著性提高。另外,就是比较常规的使用背景模型来做抑制,作者用一种类似最大化margin的思想来完成推导。PS: 与[12]是同作者)

最后,我押宝它是Mean Shift跟踪在Top期刊上的绝唱,它采用“积分直方图”(并不是那种积分直方图,你懂得)的方式克服光照等影响带来的模型漂移:

[13] Ido. Leichter. Mean Shift Trackers with Cross-Bin Metrics. TPAMI, 2012.

目标跟踪之meanshift---均值漂移搞起2000过时的的更多相关文章

  1. Meanshift均值漂移算法

      通俗理解Meanshift均值漂移算法  Meanshift车手?? 漂移?? 秋名山???   不,不,他是一组算法,  今天我就带大家来了解一下机器学习中的Meanshift均值漂移. Mea ...

  2. 目标跟踪算法meanshift优缺点

    原博主:http://blog.csdn.net/carson2005/article/details/7341051 meanShift算法用于视频目标跟踪时,采用目标的颜色直方图作为搜索特征,通过 ...

  3. 基于MeanShift的目标跟踪算法及实现

    这次将介绍基于MeanShift的目标跟踪算法,首先谈谈简介,然后给出算法实现流程,最后实现了一个单目标跟踪的MeanShift算法[matlab/c两个版本] csdn贴公式比较烦,原谅我直接截图了 ...

  4. 使用Opencv中均值漂移meanShift跟踪移动目标

    Mean Shift均值漂移算法是无参密度估计理论的一种,无参密度估计不需要事先知道对象的任何先验知识,完全依靠训练数据进行估计,并且可以用于任意形状的密度估计,在某一连续点处的密度函数值可由该点邻域 ...

  5. 目标跟踪之camshift---opencv中meanshift和camshift例子的应用

    在这一节中,主要讲目标跟踪的一个重要的算法Camshift,因为它是连续自使用的meanShift,所以这2个函数opencv中都有,且都很重要.为了让大家先达到一个感性认识.这节主要是看懂和运行op ...

  6. opencv2对读书笔记——使用均值漂移算法查找物体

    一些小概念 1.反投影直方图的结果是一个概率映射,体现了已知图像内容出如今图像中特定位置的概率. 2.概率映射能够找到最初的位置,从最初的位置開始而且迭代移动,便能够找到精确的位置,这就是均值漂移算法 ...

  7. 目标跟踪之meanshift---meanshift2

    均值漂移,可以对非刚性物理进行跟踪,是分参数估计,过程是迭代的过程,对光和形态不敏感,缺点是检测目标是固定的,特征不较少,模板背景没有实时更新,没有目标的位置精度预测只是梯度浓聚, 原理: 用文字标书 ...

  8. Opencv均值漂移pyrMeanShiftFiltering彩色图像分割流程剖析

    meanShfit均值漂移算法是一种通用的聚类算法,它的基本原理是:对于给定的一定数量样本,任选其中一个样本,以该样本为中心点划定一个圆形区域,求取该圆形区域内样本的质心,即密度最大处的点,再以该点为 ...

  9. 基于均值漂移的三维网格分割算法(Mean Shift)

    mean shift算法是一种强大的无参数离散数据点的聚类方法,其在图像平滑.图像分割以及目标跟踪等方面都有着广泛的应用.[Yamauchi et al. 2005]基于mean shift算法提出了 ...

随机推荐

  1. cf359D Pair of Numbers

    Simon has an array a1, a2, ..., an, consisting of n positive integers. Today Simon asked you to find ...

  2. java 自定义log类

    目录机构如下: package tpf.common; import org.apache.log4j.*; import java.io.File; import java.net.URL; pub ...

  3. xml文档绑定某个属性值到treeview算法

    原文发布时间为:2008-08-10 -- 来源于本人的百度文章 [由搬家工具导入] using System.Xml; protected void Button2_Click(object sen ...

  4. 【開發時,應注意事項】 vendor tools 無法 work 時,怎麼辦?

    遇到 vendor tools 無法 work 時, 最好的方法直接請 vendor 來, 為什麼呢? 因為 tool 可能 有版本的問題, 譬如: vendor tool A tool 在 buil ...

  5. LeetCode OJ-- Reverse Integer

    https://oj.leetcode.com/problems/reverse-integer/ 一个整数,给反过来,比如123输出321.注意12300的情况,应该输出321,还有-123,是-3 ...

  6. POJ - 2391 最大流

    题目链接:http://poj.org/problem?id=2391 今天掉坑多次. 做了几道题,发现从源点出来的边和进入汇点的边都在题目中出来过. POJ真是坑,交G++一直wa,检查代码检查了好 ...

  7. Socks5代理Socks5 Proxy

    Socks5代理Socks5 Proxy   Socks5代理是基于Socks协议的一种代理模式.其中,5表示该协议的版本号.它可以让局域网的计算机通过socks5代理服务器,访问外网的内容.由于它工 ...

  8. git移除上一次的commit中误添加的文件

    在使用git进行版本管理时,往往会出现一些误操作,比如将一些不加上传的文件放到了暂存区,即上传到了上一次commit中 比如: commit c134ab90ca7c4daf8bfa22e3ad706 ...

  9. spring mvc 编写处理带参数的Controller

    在上一随笔记录的基础上,现记录编写处理带有参数的Controller. @Controller //这个注解会告知<context:component:scan> 将HomeControl ...

  10. 【原】手写spring async异步组件

     最近在工作中使用到了spring自带的Async,主要是为了把其中耗时多.响应慢.计算复杂的业务抽取几个模块出来,并行查询.不得不说spring自带的比传统线程池提交在代码层次上看起来优雅简洁了不少 ...