首先,数据文件和模型文件都已经下载并处理好,不提。

cd   "caffe-root-dir "

----------------------------------分割线-------------------------------

# set up Python environment: numpy for numerical routines, and matplotlib for plotting
import numpy as np
import matplotlib.pyplot as plt
# display plots in this notebook
%matplotlib inline
--------------------------------------------------------------------------------------
# set display defaults
plt.rcParams['figure.figsize'] = (10, 10)        # large images
plt.rcParams['image.interpolation'] = 'nearest'  # don't interpolate: show square pixels
plt.rcParams['image.cmap'] = 'gray'  # use grayscale output rather than a (potentially misleading) color heatmap

--------------------------------------------------------------------------------------

# The caffe module needs to be on the Python path;
#  we'll add it here explicitly.
import sys
caffe_root = './'  # this file should be run from {caffe_root}/examples (otherwise change this line)
sys.path.insert(0, caffe_root + 'build/install/python')
--------------------------------------------------------------------------------------
import caffe
# If you get "No module named _caffe", either you have not built pycaffe or you have the wrong path.

caffe.set_mode_cpu()
--------------------------------------------------------------------------------------
model_def = caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt'
model_weights = caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'

net = caffe.Net(model_def,      # defines the structure of the model
                model_weights,  # contains the trained weights
                caffe.TEST)     # use test mode (e.g., don't perform dropout)

--------------------------------------------------------------------------------------

# load the mean ImageNet image (as distributed with Caffe) for subtraction
mu = np.load(caffe_root + 'build/install/python/caffe/imagenet/ilsvrc_2012_mean.npy')
mu = mu.mean(1).mean(1)  # average over pixels to obtain the mean (BGR) pixel values
print 'mean-subtracted values:', zip('BGR', mu)

# create transformer for the input called 'data'
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})

transformer.set_transpose('data', (2,0,1))  # move image channels to outermost dimension
transformer.set_mean('data', mu)            # subtract the dataset-mean value in each channel
transformer.set_raw_scale('data', 255)      # rescale from [0, 1] to [0, 255]
transformer.set_channel_swap('data', (2,1,0))  # swap channels from RGB to BGR

--------------------------------------------------------------------------------------

# set the size of the input (we can skip this if we're happy
#  with the default; we can also change it later, e.g., for different batch sizes)
net.blobs['data'].reshape(50,        # batch size
                          3,         # 3-channel (BGR) images
                          227, 227)  # image size is 227x227

image = caffe.io.load_image(caffe_root + 'examples/images/cat.jpg')
transformed_image = transformer.preprocess('data', image)
plt.imshow(image)

--------------------------------------------------------------------------------------

# copy the image data into the memory allocated for the net
net.blobs['data'].data[...] = transformed_image

### perform classification
output = net.forward()

output_prob = output['prob'][0]  # the output probability vector for the first image in the batch

print 'predicted class is:', output_prob.argmax()

-----------------------------------------

# load ImageNet labels
labels_file = caffe_root + 'data/ilsvrc12/synset_words.txt'
if not os.path.exists(labels_file):
    !../data/ilsvrc12/get_ilsvrc_aux.sh
    
labels = np.loadtxt(labels_file, str, delimiter='\t')

print 'output label:', labels[output_prob.argmax()]

----------------------------------------------------------------

# sort top five predictions from softmax output
top_inds = output_prob.argsort()[::-1][:5]  # reverse sort and take five largest items

print 'probabilities and labels:'
zip(output_prob[top_inds], labels[top_inds])

----------------------------------------------------------------

%timeit net.forward()

----------------------------------------------------------------

caffe.set_device(0)  # if we have multiple GPUs, pick the first one
caffe.set_mode_gpu()
net.forward()  # run once before timing to set up memory
%timeit net.forward()

----------------------------------------------------------------

# for each layer, show the output shape
for layer_name, blob in net.blobs.iteritems():
    print layer_name + '\t' + str(blob.data.shape)

----------------------------------------------------------------

for layer_name, param in net.params.iteritems():
    print layer_name + '\t' + str(param[0].data.shape), str(param[1].data.shape)

----------------------------------------------------------------

def vis_square(data):
    """Take an array of shape (n, height, width) or (n, height, width, 3)
       and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n)"""
    
    # normalize data for display
    data = (data - data.min()) / (data.max() - data.min())
    
    # force the number of filters to be square
    n = int(np.ceil(np.sqrt(data.shape[0])))
    padding = (((0, n ** 2 - data.shape[0]),
               (0, 1), (0, 1))                 # add some space between filters
               + ((0, 0),) * (data.ndim - 3))  # don't pad the last dimension (if there is one)
    data = np.pad(data, padding, mode='constant', constant_values=1)  # pad with ones (white)
    
    # tile the filters into an image
    data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
    data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
    
    plt.imshow(data); plt.axis('off')

----------------------------------------------------------------

# the parameters are a list of [weights, biases]
filters = net.params['conv1'][0].data
vis_square(filters.transpose(0, 2, 3, 1))

----------------------------------------------------------------

feat = net.blobs['conv1'].data[0, :36]
vis_square(feat)

----------------------------------------------------------------

feat = net.blobs['pool5'].data[0]
vis_square(feat)

----------------------------------------------------------------

feat = net.blobs['fc6'].data[0]
plt.subplot(2, 1, 1)
plt.plot(feat.flat)
plt.subplot(2, 1, 2)
_ = plt.hist(feat.flat[feat.flat > 0], bins=100)

----------------------------------------------------------------

feat = net.blobs['prob'].data[0]
plt.figure(figsize=(15, 3))
plt.plot(feat.flat)

----------------------------------------------------------------

# download an image
my_image_url = "..."  # paste your URL here
# for example:
# my_image_url = "https://upload.wikimedia.org/wikipedia/commons/b/be/Orang_Utan%2C_Semenggok_Forest_Reserve%2C_Sarawak%2C_Borneo%2C_Malaysia.JPG"
!wget -O image.jpg $my_image_url

# transform it and copy it into the net
image = caffe.io.load_image('image.jpg')
net.blobs['data'].data[...] = transformer.preprocess('data', image)

# perform classification
net.forward()

# obtain the output probabilities
output_prob = net.blobs['prob'].data[0]

# sort top five predictions from softmax output
top_inds = output_prob.argsort()[::-1][:5]

plt.imshow(image)

print 'probabilities and labels:'
zip(output_prob[top_inds], labels[top_inds])

----------------------------------------------------------------

----------------------------------------------------------------

----------------------------------------------------------------

----------------------------------------------------------------

----------------------------------------------------------------

caffe学习--caffe入门classification00学习--ipython的更多相关文章

  1. 人工智能深度学习Caffe框架介绍,优秀的深度学习架构

    人工智能深度学习Caffe框架介绍,优秀的深度学习架构 在深度学习领域,Caffe框架是人们无法绕过的一座山.这不仅是因为它无论在结构.性能上,还是在代码质量上,都称得上一款十分出色的开源框架.更重要 ...

  2. win7 配置微软的深度学习caffe

    win7 配置微软的深度学习caffe   官方下载: https://github.com/Microsoft/caffe 然后 直接修改caffe目录下的windows目录下的项目的props文件 ...

  3. Caffe——清晰高效的深度学习(Deep Learning)框架

    Caffe(http://caffe.berkeleyvision.org/)是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的贾扬清(http://daggerfs.com/ ...

  4. 学习Caffe(一)安装Caffe

    Caffe是一个深度学习框架,本文讲阐述如何在linux下安装GPU加速的caffe. 系统配置是: OS: Ubuntu14.04 CPU: i5-4690 GPU: GTX960 RAM: 8G ...

  5. 深度学习caffe测试代码c++

    #include <caffe/caffe.hpp> #include <opencv2/core/core.hpp> #include <opencv2/highgui ...

  6. 21天学习caffe(二)

    本文大致记录使用caffe的一次完整流程 Process 1 下载mnist数据集(数据量很小),解压放在data/mnist文件夹中:2 运行create_mnist.sh,生成lmdb格式的数据( ...

  7. Python 初学者 入门 应该学习 python 2 还是 python 3?

    许多刚入门 Python 的朋友都在纠结的的问题是:我应该选择学习 python2 还是 python3? 对此,咪博士的回答是:果断 Python3 ! 可是,还有许多小白朋友仍然犹豫:那为什么还是 ...

  8. 问题集录--新手入门深度学习,选择TensorFlow 好吗?

    新手入门深度学习,选择 TensorFlow 有哪些益处? 佟达:首先,对于新手来说,TensorFlow的环境配置包装得真心非常好.相较之下,安装Caffe要痛苦的多,如果还要再CUDA环境下配合O ...

  9. Python学习--01入门

    Python学习--01入门 Python是一种解释型.面向对象.动态数据类型的高级程序设计语言.和PHP一样,它是后端开发语言. 如果有C语言.PHP语言.JAVA语言等其中一种语言的基础,学习Py ...

随机推荐

  1. Linux环境CentOS6.9安装配置Elasticsearch6.2.2最全详细教程

    Linux环境CentOS6.9安装配置Elasticsearch6.2.2最全详细教程 前言 第一步:下载Elasticsearch6.2.2 第二步:创建应用程序目录 第四步:创建Elastics ...

  2. 算法复习——扫描线(hdu1542)

    题目: Problem Description There are several ancient Greek texts that contain descriptions of the fable ...

  3. bootstrap 事件shown.bs.modal用于监听并执行你自己的代码【写hostmanger关联部门遇到的问题及解决方法】

    背景:记录写hostmanger中用户下拉框关联部门遇到的问题及解决方法 问题:需求是展示页面展示用户所属的部门,点击修改按钮后,弹出对应的model,这个时候部门的select要默认选中用户所在的s ...

  4. <深入理解计算机系统> CSAPP Tiny web 服务器

    本文是我学习<深入理解计算机系统>中网络编程部分的学习笔记. 1. Web基础       web客户端和服务器之间的交互使用的是一个基于文本的应用级协议HTTP(超文本传输协议).一个w ...

  5. elasticsearch优酷教程

    犹学达的教程,可以用youku搜索一下,很不错

  6. 【CF696B】Puzzles(树形DP,期望)

    题意:n 个节点的树,初始位置为 1 号节点,初始时间为 1.每次随机地走向任何一个没有走过的子树并且令时间 +1求问走到每一个点时的时间的期望值 思路:比较少见的一道自顶向下的树形DP dp[i]表 ...

  7. Django ConnectionAbortedError WinError 10053 错误

    因为ajax默认是异步提交,可是有时候我们会发现,本来要求请求马上出现,可是异步会导致后面突然再执行,这样就出问题了. (1)添加这样一段代码 $.ajaxSetup({ async : false ...

  8. power path 對 UI 上的電池容量曲線 battery curve 百分比 的 改善

    Maintenance.Recharging charger ic 對電池充電時有一種名為 maintenance.recharging 的行為, charger ic 對 電池 充電時,當充滿後,它 ...

  9. Yii使用find findAll查找出指定字段的实现方法

    Yii使用find findAll查找出指定字段的实现方法,非常实用的技巧,需要的朋友可以参考下. 用过Yii的朋友都知道,采用如下方法: 查看代码   打印 1 modelName::model() ...

  10. LeetCode OJ——Convert Sorted List to Binary Search Tree

    http://oj.leetcode.com/problems/convert-sorted-list-to-binary-search-tree/ 将一个按照元素升序排列的链表转换成BST.根据自身 ...