[TC_SRM_460]TheCitiesAndRoadsDivOne

试题描述

John and Brus have become very famous people all over the world, especially in Bolivia. Once they decided to visit their fan club in Bolivia. John has an old map of Bolivia which shows all of its cities and the roads connecting them. All roads are bidirectional, meaning they can be traversed in both directions. Since the map is old, it's possible that some additional roads have been built since the map was produced. However, roads are never destroyed in Bolivia, so all the roads on the map still exist.

Brus has discovered on the Internet that each pair of Bolivian cities now has at least one and at most two simple paths connecting them. A path between cities \(A\) and \(B\) is a sequence of cities starting with \(A\) and ending with \(B\) such that there's a road between each pair of consecutive cities in the sequence. The path is considered simple if it consists of distinct cities.

John and Brus have decided to add some new roads to the old map in such a way that the resulting map satisfies this condition. They can only add a road between a pair of cities if that road did not already exist in the old map. They can't add more than one road between the same pair of cities, and they can't add a road that leads from a city to itself. All added roads must be bidirectional.

You are given a map. The \(j\)-th character of the \(i\)-th element of map will be Y if there is a road between the \(i\)-th and \(j\)-th cities on the old map, or N otherwise. Return the number of ways John and Brus can add new roads to the old map modulo \(1234567891\). Two ways are considered different if the sets of added roads are distinct. The order in which roads are added does not matter.

给一个 \(n\)(\(\le 20\))个节点的无向图,求加一些边使得图成为一棵树或者一棵单环树的方案数(答案对 \(1234567891\) 取模)。

输入

传给你一个 string[] 类型的参数

输出

返回一个整数表示答案

输入示例1

{"NNNNNNNNNNNN", "NNNNNNNNNNNN", "NNNNNNNNNNNN", "NNNNNNNNNNNN", "NNNNNNNNNNNN", "NNNNNNNNNNNN", "NNNNNNNNNNNN", "NNNNNNNNNNNN", "NNNNNNNNNNNN", "NNNNNNNNNNNN", "NNNNNNNNNNNN", "NNNNNNNNNNNN"}

输出示例1

Returns: 1137797187

输入示例2

{"NYYNN", "YNYNN", "YYNNN", "NNNNY", "NNNYN"}

输出示例2

Returns: 6

数据规模及约定

见“试题描述

题解

如果只需要组成树而不是单环树,那么就是明明的烦恼这题,prufer 序列即可,注意每个连通块缩成一个点后需要加权,因为它们大小不一。

这道题我们受它启发,当有一个环的时候,我们枚举哪些连通块组成了一个环,然后组成环的方案乘上接下来组成树的方案(仍可用 prufer 序列计算)就可以了。

注意这题有很多情况需分类讨论(以下只强调特殊情况):

  • 图中已经包含了一个环(这类情况中还需注意所有点都连成了同一个连通分量的情况);

  • 连成环的连通分量只有 \(1\) 个(如果这个连通分量大小小于 \(3\) 则不能用这个连通分量创造环);

  • 连城环的连通分量只有 \(2\) 个(需要考虑重边问题)。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
#include <string>
#include <vector>
using namespace std;
#define rep(i, s, t) for(int i = (s); i <= (t); i++)
#define dwn(i, s, t) for(int i = (s); i >= (t); i--) int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
} #define maxn 25
#define maxs 1048576
#define MOD 1234567891
#define LL long long class TheCitiesAndRoadsDivOne {
private:
char str[maxn];
int n, fa[maxn], siz[maxn], Siz[maxn], cntb;
bool hasc[maxn];
int findset(int x) { return x == fa[x] ? x : fa[x] = findset(fa[x]); } LL Pow(int a, int b) {
LL ans = 1, t = a;
while(b) {
if(b & 1) (ans *= t) %= MOD;
(t *= t) %= MOD; b >>= 1;
}
return ans;
} int cbit[maxs], Log[maxs], fac[maxn]; public:
int find(vector <string> field) {
n = field.size();
fac[0] = 1;
rep(i, 1, n) fa[i] = i, siz[i] = 1, fac[i] = (LL)fac[i-1] * i % MOD;
rep(i, 1, n) {
strcpy(str + 1, field[i-1].c_str());
rep(j, 1, n) if(i < j && str[j] == 'Y') {
int u = findset(i), v = findset(j);
if(u == v) hasc[u] = 1;
else fa[v] = u, siz[u] += siz[v];
}
} bool cyc = 0;
rep(i, 1, n) if(findset(i) == i) Siz[cntb++] = siz[i], cyc |= hasc[i];
LL ans;
if(cntb == 1) ans = 1;
else {
ans = Pow(n, cntb - 2);
rep(i, 0, cntb - 1) (ans *= Siz[i]) %= MOD;
}
if(cyc) return ans; int all = (1 << cntb) - 1;
rep(s, 1, all) cbit[s] = cbit[s&~(s&-s)] + 1, Log[s] = s == 1 ? 0 : Log[s>>1] + 1;
rep(s, 1, all) {
LL tmp;
int csiz = 0, tot;
if(cbit[s] == 1) {
csiz = Siz[Log[s]];
if(csiz < 3) continue;
tmp = (((LL)csiz * (csiz - 1) >> 1) % MOD + MOD - csiz + 1) % MOD;
}
else if(cbit[s] == 2) {
int t1 = s & -s, t2 = (s ^ t1) & -(s ^ t1);
t1 = Log[t1]; t2 = Log[t2];
if(Siz[t1] == 1 && Siz[t2] == 1) continue;
csiz = Siz[t1] + Siz[t2];
tmp = (LL)Siz[t1] * Siz[t2] % MOD;
tmp = (tmp * (tmp - 1) >> 1) % MOD;
}
else {
tmp = 617283946ll * fac[cbit[s]-1] % MOD;
rep(i, 0, cntb - 1) if(s >> i & 1)
csiz += Siz[i], (tmp *= (LL)Siz[i] * Siz[i] % MOD) %= MOD;
}
tot = cntb - cbit[s] + 1;
if(tot > 1) {
(tmp *= Pow(n, tot - 2) % MOD * csiz % MOD) %= MOD;
rep(i, 0, cntb - 1) if(!(s >> i & 1)) (tmp *= Siz[i]) %= MOD;
}
(ans += tmp) %= MOD;
} return ans;
}
};

[TC_SRM_460]TheCitiesAndRoadsDivOne的更多相关文章

  1. topcoder srm 460 div1

    problem1 link 设$f[i][j]$表示已经分配了answers中的前$i$个,分配给的问题的状态为 $j$的方案数. 其中状态可以用$n$位的三进制表示,0表示还未分配,1表示已分配是 ...

随机推荐

  1. python_56_递归

    在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.(最大调用自己999次) def calc(n): print(n) if int(n/2)>0: retur ...

  2. DongDong坐飞机

    题目连接:https://ac.nowcoder.com/acm/contest/904/D 第一次研究了一下这种题型,还是比较好理解的,因为有半价次数的限制,所以要把每一中情况都写出来,dp[现在的 ...

  3. angular6项目中使用echarts图表的方法(有一个坑,引用报错)

    1.安装相关依赖(采用的webpack) npm install ecahrts --save npm install ngx-echarts --save 2.angular.json 配置echa ...

  4. [C++]#if !defined 的作用

    当你用VC的菜单新增一个类,你会发现自动生成的代码总是类似下面的样子: #if !defined(AFX_XXXX__INCLUDED_) #define  AFX_XXXX__INCLUDED_ 具 ...

  5. STL笔记(こ)--删除数组中重复元素

    使用STL中的Unique函数: #include<bits/stdc++.h> using namespace std; void fun(int &n) //配套for_eac ...

  6. MSBuild常用方法

    打包后把nuget包复制到指定的目录 <Target Name="CopyPackage" AfterTargets="Pack"> <Cop ...

  7. js数组删除(splice和delete)

    最近一直在写js的数组,然后就发现了很奇怪的问题,后来才发现了规律. 删除数据的一行,一般有两种方法,一个是splice,一个是delete: splice:删除了数组后,数组的长度会自动变化.用法: ...

  8. javaWeb开发中常见的问题

    1.修改表单提交的时候不好使可能是因为没写对应隐藏域的ID 2.el表达式在js代码中要加“”,例如 "${}" 3.JavaScript中的函数也有重载的特性.如果两个input ...

  9. optparser 模块 提取IP,端口,用户名,密码参数模板

    import optparse #class FtpClient(object): #自定义类可以自己修改 '''ftp客户端''' #def __init__(self): parser = opt ...

  10. python 闯关之路四(下)(并发编程与数据库编程) 并发编程重点

    python 闯关之路四(下)(并发编程与数据库编程)   并发编程重点: 1 2 3 4 5 6 7 并发编程:线程.进程.队列.IO多路模型   操作系统工作原理介绍.线程.进程演化史.特点.区别 ...