最长k可重区间集(cogs 743)
«问题描述:
«编程任务:
对于给定的开区间集合I和正整数k,计算开区间集合I的最长k可重区间集的长度。
«数据输入:
由文件interv.in提供输入数据。文件的第1 行有2 个正整数n和k,分别表示开区间的
个数和开区间的可重迭数。接下来的n行,每行有2个整数,表示开区间的两个端点坐标。
«结果输出:
程序运行结束时,将计算出的最长k可重区间集的长度输出到文件interv.out中。
输入文件示例 输出文件示例
interv.in
4 2
1 7
6 8
7 10
9 13
interv.out
15
/*
朴素的做法:
把k看作是k条路径,一条路径只能由不重复的区间组成,每个区间只能用一次,然后拆点跑最大费用流。
*/
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
#define N 1010
#define inf 1000000000
using namespace std;
int head[N],dis[N],inq[N],fa[N],n,k,S,T,cnt=;
struct Node{int l,r;}a[N];
struct node{int v,f,w,pre;}e[N*];
queue<int> q;
void add(int u,int v,int f,int w){
e[++cnt].v=v;e[cnt].f=f;e[cnt].w=w;e[cnt].pre=head[u];head[u]=cnt;
e[++cnt].v=u;e[cnt].f=;e[cnt].w=-w;e[cnt].pre=head[v];head[v]=cnt;
}
bool spfa(){
for(int i=;i<=T;i++) dis[i]=inf;
dis[S]=;q.push(S);
while(!q.empty()){
int u=q.front();q.pop();inq[u]=;
for(int i=head[u];i;i=e[i].pre)
if(e[i].f&&dis[e[i].v]>dis[u]+e[i].w){
dis[e[i].v]=dis[u]+e[i].w;
fa[e[i].v]=i;
if(!inq[e[i].v]){
inq[e[i].v]=;
q.push(e[i].v);
}
}
}
return dis[T]!=inf;
}
int updata(){
int i=fa[T],x=inf;
while(i){
x=min(x,e[i].f);
i=fa[e[i^].v];
}
i=fa[T];
while(i){
e[i].f-=x;
e[i^].f+=x;
i=fa[e[i^].v];
}
return x*dis[T];
}
bool cmp(const Node&x,const Node&y){
if(x.l==y.l) return x.r<y.r;
return x.l<y.l;
}
int main(){
freopen("interv.in","r",stdin);
freopen("interv.out","w",stdout);
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)
scanf("%d%d",&a[i].l,&a[i].r);
sort(a+,a+n+,cmp);
S=;T=n*+;int SS=n*+;
add(S,SS,k,);
for(int i=;i<=n;i++){
add(SS,i,inf,);
add(i+n,T,inf,);
add(i,i+n,,a[i].l-a[i].r);
}
for(int i=;i<=n;i++)
for(int j=i+;j<=n;j++)
if(a[i].r<=a[j].l) add(i+n,j,,);
int minv=;
while(spfa()) minv+=updata();
printf("%d",-minv);
return ;
}
/*
还有一种神奇的做法:
离散化所有区间的端点,把每个端点看做一个顶点,建立附加源S汇T。
建图如下:
从S到顶点1(最左边顶点)连接一条容量为K,费用为0的有向边。
从顶点2N(最右边顶点)到T连接一条容量为K,费用为0的有向边。
从顶点i到顶点i+1(i+1<=2N),连接一条容量为无穷大,费用为0的有向边。
对于每个区间[a,b],从a对应的顶点i到b对应的顶点j连接一条容量为1,费用为区间长度的有向边。
*/
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
#define N 1010
#define inf 1000000000
using namespace std;
int l[N],r[N],len[N],a[N],head[N],dis[N],inq[N],fa[N],n,k,S,T,cnt=;
struct node{int v,f,w,pre;}e[N*];
queue<int> q;
void add(int u,int v,int f,int w){
e[++cnt].v=v;e[cnt].f=f;e[cnt].w=w;e[cnt].pre=head[u];head[u]=cnt;
e[++cnt].v=u;e[cnt].f=;e[cnt].w=-w;e[cnt].pre=head[v];head[v]=cnt;
}
bool spfa(){
for(int i=;i<=T;i++) dis[i]=inf;
dis[S]=;q.push(S);
while(!q.empty()){
int u=q.front();q.pop();inq[u]=;
for(int i=head[u];i;i=e[i].pre)
if(e[i].f&&dis[e[i].v]>dis[u]+e[i].w){
dis[e[i].v]=dis[u]+e[i].w;
fa[e[i].v]=i;
if(!inq[e[i].v]){
inq[e[i].v]=;
q.push(e[i].v);
}
}
}
return dis[T]!=inf;
}
int updata(){
int i=fa[T],x=inf;
while(i){
x=min(x,e[i].f);
i=fa[e[i^].v];
}
i=fa[T];
while(i){
e[i].f-=x;
e[i^].f+=x;
i=fa[e[i^].v];
}
return x*dis[T];
}
int main(){
//freopen("interv.in","r",stdin);
//freopen("interv.out","w",stdout);
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++){
scanf("%d%d",&l[i],&r[i]);
a[i*-]=l[i];a[i*]=r[i];len[i]=r[i]-l[i];
}
sort(a+,a+n*+);
for(int i=;i<=n;i++){
l[i]=lower_bound(a+,a+n*+,l[i])-a;
r[i]=lower_bound(a+,a+n*+,r[i])-a;
}
S=;T=n*+;
add(,,k,);add(n*,T,k,);
for(int i=;i<n*;i++) add(i,i+,inf,);
for(int i=;i<=n;i++) add(l[i],r[i],,-len[i]);
int minv=;
while(spfa()) minv+=updata();
printf("%d",-minv);
return ;
}
最长k可重区间集(cogs 743)的更多相关文章
- 【网络流24题】最长k可重区间集(费用流)
		
[网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...
 - COGS743. [网络流24题] 最长k可重区间集
		
743. [网络流24题] 最长k可重区间集 ★★★ 输入文件:interv.in 输出文件:interv.out 简单对比时间限制:1 s 内存限制:128 MB «问题描述: «编 ...
 - 【网络流24题】No.21 (最长 k 可重区间集问题 最长不相交路径 最大费用流)
		
[] 输入文件示例input.txt4 21 76 87 109 13 输出文件示例output.txt15 [分析] 直接co题解好了,写得挺全.. [建模方法] 方法1 按左端点排序所有区间,把每 ...
 - (luogu P3358)最长k可重区间集问题  [TPLY]
		
最长k可重区间集问题 题目链接 https://www.luogu.org/problemnew/show/3358 做法 所有点向下一个点连容量为k费用为0的边 l和r连容量为1费用为区间长度的边 ...
 - 【网络流24题21】最长k可重区间集问题
		
题面戳我 题目描述 对于给定的开区间集合I和正整数k,计算开区间集合I的最长k可重区间集的长度. 输入格式: 的第 1 行有 2 个正整数n和k,分别表示开区间的个数和开区间的可重迭数.接下来的 n行 ...
 - 网络流 P3358 最长k可重区间集问题
		
P3358 最长k可重区间集问题 题目描述 对于给定的开区间集合 I 和正整数 k,计算开区间集合 I 的最长 k可重区间集的长度. 输入输出格式 输入格式: 的第 1 行有 2 个正整数 n和 k, ...
 - LibreOJ #6014. 「网络流 24 题」最长 k 可重区间集
		
#6014. 「网络流 24 题」最长 k 可重区间集 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 ...
 - 【刷题】LOJ 6014 「网络流 24 题」最长 k 可重区间集
		
题目描述 给定实直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取出开区间集合 \(S \subseteq ...
 - [网络流24题] 最长k可重区间集
		
https://www.luogu.org/problemnew/show/3358 以区间(1,5),(2,6),(7,8)为例 建模方法一: 建模方法二: 离散化区间端点 相当于找k条费用最大的不 ...
 
随机推荐
- 操作系统(3)_CPU调度_李善平ppt
			
不只上面的四种,比如时间片到了也会引起调度. 具体的调度算法: fcfs简单,但是波动很大. 最高相应比算法,执行时间最长就应该等待的长点,比sjf多了一个等待时间的考虑. 硬件定时器和软件计数器共同 ...
 - Vmware 不能上网
			
Vmware 安装 WIN7 不能上网,如何解决? 情况一: 虚拟机右下角出现红色叉号,检查物理的服务是否开启“VMware NAT Service” 1 .开启方法:WIN + R -> 输入 ...
 - node 日志分割-pm2-logrotate
			
使用pm2-logrotate进行pm2日志切割,测试是按照文件大小1k切割: 安装 pm2 install pm2-logrotate 设置 重启 截图 截图是按照文件大小分割,如果文件小于设置分割 ...
 - k8s的pv和pvc简述
			
pvc:资源需要指定:1.accessMode:访问模型:对象列表: ReadWriteOnce – the volume can be mounted as read-write by a s ...
 - 使用eclipse导入web项目
			
第一步 第二步 第三步 第四步 最后就多了一个web项目
 - js禁止微信浏览器下拉显示黑底查看网址
			
// 首先禁止body document.body.ontouchmove = function (e) { e.preventDefault(); }; // 然后取得触摸点的坐标 var star ...
 - JZOJ 5347. 遥远的金字塔
			
Description Input Output Sample Input 5 3 1 6 1 5 3 5 4 4 4 4 Sample Output 15 Data Constraint 做法: 其 ...
 - hadoop启动时权限不足
			
之前在使用时的没用去懂.ssh,后来因为一些情况直接将其权限修改为777. 第一位7等于4+2+1,所以就是rwx,所有者有读取.写入.执行的权限:第二位7也是4+2+1,rwx,同组用户具有读取.写 ...
 - OpenCV学习笔记(五) 文件存取
			
转自输入输出XML和YAML文件 To be filled
 - OpenCV学习笔记(二) cv::Mat
			
部分内容转自:OpenCV Tuturial,ggicci 在OpenCV Tuturial中可查看Mat的初始化与打印方法. Mat本质上是由两个数据部分组成的类: 矩阵头(包含矩阵尺寸,存储方法, ...