[BZOJ2678][Usaco2012 Open]Bookshelf
P.S. 偶然间发现可以用 markdown。。。
[BZOJ2678][Usaco2012 Open]Bookshelf
试题描述
When Farmer John isn't milking cows, stacking haybales, lining up his cows, or building fences, he enjoys sitting down with a good book. Over the years, he has collected \(N\) books (\(1 \leq N \leq 10^5\)), and he wants to build a new set of bookshelves to hold them all. Each book \(i\) has a width \(W(i)\) and height \(H(i)\). The books need to be added to a set of shelves in order; for example, the first shelf should contain books \(1...k\) for some \(k\), the second shelf should start with book \(k+1\), and so on. Each shelf can have a total width of at most \(L\) (\(1 \leq L \leq 10^9\)). The height of a shelf is equal to the height of the tallest book on that shelf, and the height of the entire set of bookshelves is the sum of the heights of all the individual shelves, since they are all stacked vertically. Please help FJ compute the minimum possible height for the entire set of bookshelves. PROBLEM NAME: bookshelf
输入
Line 1: Two space-separated integers: \(N\) and \(L\).
Lines 2..1+N: Line \(i+1\) contains two space-separated integers: \(H(i)\) and \(W(i)\). (\(1 \leq H(i) \leq 10^6\); \(1 \leq W(i) \leq L\)).
输出
- Line 1: The minimum possible total height for the set of bookshelves. SAMPLE
输入示例
5 10 //五本书,每个书架的宽度不超过10
5 7 //第一本书的高度及宽度
9 2
8 5
13 2
3 8
输出示例
21
数据规模及约定
见“试题描述”和“输入”
题解
算法1
这题总体思路肯定是 dp,设 \(f_i\) 表示前 \(i\) 本书所需的最小高度和,则容易得到 \(f_i = min\{ f_j + max\{ H_{j+1}, H_{j+2}, ... , H_i \} | \sum_{k=j+1}^i \leq L \}\)
那么我们只需要考虑从哪个 \(j\) 转移到 \(i\) 就好了。
于是我们可以维护一个 \(H_i\) 下降的单调栈,然后每次计算 \(f_i\) 的时候用前缀和 \(S_i - S_j \leq L\) 的限制二分出 \(j\) 的位置(数组 \(S\) 表示高度的前缀和),然后就是查询单调栈中一段区间的最小值,可以用线段树维护。栈的插入、删除操作都可以当做线段树的点修改。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
}
#define maxn 100010
#define oo 2147483647
#define ool (1ll << 60)
#define LL long long
int n, hei[maxn], wid[maxn], lim;
LL Sw[maxn];
int S[maxn], mx[maxn], top;
LL f[maxn];
LL minv[maxn<<2];
void update(int o, int l, int r, int p, LL v) {
if(l == r) minv[o] = v;
else {
int mid = l + r >> 1, lc = o << 1, rc = lc | 1;
if(p <= mid) update(lc, l, mid, p, v);
else update(rc, mid + 1, r, p, v);
minv[o] = min(minv[lc], minv[rc]);
}
return ;
}
LL query(int o, int l, int r, int ql, int qr) {
if(l > r) return ool;
if(ql <= l && r <= qr) return minv[o];
int mid = l + r >> 1, lc = o << 1, rc = lc | 1;
LL res = ool;
if(ql <= mid) res = min(res, query(lc, l, mid, ql, qr));
if(qr > mid) res = min(res, query(rc, mid + 1, r, ql, qr));
return res;
}
int main() {
n = read(); lim = read();
for(int i = 1; i <= n; i++) hei[i] = read(), wid[i] = read(), Sw[i] = Sw[i-1] + wid[i];
f[0] = 0; S[0] = 0;
S[top = 1] = mx[1] = 0;
update(1, 1, n + 1, 1, 0);
for(int i = 1; i <= n; i++) {
while(top && hei[i] > mx[top]) top--;
S[++top] = i; mx[top] = hei[i];
// printf("stack: "); for(int j = 1; j <= top; j++) printf("%d%c", S[j], j < top ? ' ' : '\n');
update(1, 1, n + 1, top, f[S[top-1]] + hei[i]);
int l = 1, r = top, pos = lower_bound(Sw, Sw + n + 1, Sw[i] - lim) - Sw;
while(l < r) {
int mid = l + r >> 1;
if(Sw[i] - Sw[S[mid]] > lim) l = mid + 1; else r = mid;
}
f[i] = min(query(1, 1, n + 1, l + 1, top), f[pos] + mx[l]);
// printf("%d %d | %d: %lld\n", l, S[l], i, f[i]);
}
printf("%lld\n", f[n]);
return 0;
}
算法2
还是维护单调栈,我们发现这其实是一个双头队列,偶然在 UOJ 上发现了一个 \(O(n)\) 的做法。
其实就是用两个栈模拟一个双头队列,注意到每个栈的前缀最小值是可以 \(O(1)\) 修改和询问的,所以用这种方法就可能将算法总复杂度降到 \(O(n)\)。
我觉得最妙的地方在于重构,当某个栈空的时候将另一个栈分一半给这个已经空的栈(即暴力重构),复杂度有保证,详见上面链接(读者也不妨自己思考思考)。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
}
#define maxn 100010
#define oo 2147483647
#define ool (1ll << 60)
#define LL long long
int n, lim, hei[maxn], wid[maxn], lst[maxn]; // lst: last bigger height
LL Sw[maxn];
struct Info {
int pos, mxv; LL val;
Info() {}
Info(int _1, int _2, LL _3): pos(_1), mxv(_2), val(_3) {}
} lft[maxn], rgt[maxn];
int Sl, Sr;
LL mnl[maxn], mnr[maxn];
int rebuild() {
if(!Sl && !Sr) return -1;
if(!Sl) {
int mid = Sr + 1 >> 1;
for(int i = mid; i; i--) lft[++Sl] = rgt[i], mnl[Sl] = min(mnl[Sl-1], lft[Sl].val);
for(int i = mid + 1; i <= Sr; i++) rgt[i-mid] = rgt[i], mnr[i-mid] = min(mnr[i-mid-1], rgt[i-mid].val);
Sr -= mid;
return 0;
}
int mid = Sl + 1 >> 1;
for(int i = mid; i; i--) rgt[++Sr] = lft[i], mnr[Sr] = min(mnr[Sr-1], rgt[Sr].val);
for(int i = mid + 1; i <= Sl; i++) lft[i-mid] = lft[i], mnl[i-mid] = min(mnl[i-mid-1], lft[i-mid].val);
Sl -= mid;
return 0;
}
int q[maxn], hd, tl;
LL f[maxn];
int main() {
n = read(); lim = read();
for(int i = 1; i <= n; i++) hei[i] = read(), wid[i] = read(), Sw[i] = Sw[i-1] + wid[i];
hei[0] = oo;
for(int i = 1; i <= n; i++) {
lst[i] = i - 1;
while(hei[lst[i]] <= hei[i]) lst[i] = lst[lst[i]];
}
mnl[0] = mnr[0] = ool;
rgt[++Sr] = Info(lst[1], hei[1], hei[1]);
mnr[1] = f[1] = hei[1];
q[hd = tl = 1] = 1;
int lft_edge = 0;
for(int i = 2; i <= n; i++) {
while(1) {
if(!Sr && rebuild()) break;
if(rgt[Sr].mxv > hei[i]) break;
Sr--;
}
rgt[++Sr] = Info(lst[i], hei[i], f[lst[i]] + hei[i]);
mnr[Sr] = min(mnr[Sr-1], rgt[Sr].val);
while(1) {
if(!Sl && rebuild()) break;
if(Sw[i] - Sw[lft[Sl].pos] <= lim) break;
Sl--;
}
while(Sw[i] - Sw[lft_edge] > lim) lft_edge++;
while(hd <= tl && hei[i] >= hei[q[tl]]) tl--; q[++tl] = i;
while(lft_edge > q[hd]) hd++;
f[i] = min(min(mnl[Sl], mnr[Sr]), f[lft_edge] + hei[q[hd]]);
// printf("f[%d] = %lld\n", i, f[i]);
}
printf("%lld\n", f[n]);
return 0;
}
P.S. markdown 好难用。。。
[BZOJ2678][Usaco2012 Open]Bookshelf的更多相关文章
- [USACO2012 OPEN] Bookshelf
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2678 [算法] 首先不难想到如下DP : 记f[i]表示前i本书的高度和最小值 显然 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- bookshelf
nodejs mysql ORM 比node-mysql好用多了. bookshelf 支持restful功能,用到的时候研究下:https://www.sitepoint.com/getting-s ...
- POJ3628 Bookshelf 2(01背包+dfs)
Bookshelf 2 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8745 Accepted: 3974 Descr ...
- Bookshelf 2
Bookshelf 2 Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit ...
- POJ 3628 Bookshelf 2(01背包)
Bookshelf 2 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9488 Accepted: 4311 Descr ...
- 动态规划(状态压缩):BZOJ 2621 [Usaco2012 Mar]Cows in a Skyscraper
2621: [Usaco2012 Mar]Cows in a Skyscraper Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 303 Sol ...
- BZOJ3016: [Usaco2012 Nov]Clumsy Cows
3016: [Usaco2012 Nov]Clumsy Cows Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 71 Solved: 52[Submi ...
- BZOJ 3011: [Usaco2012 Dec]Running Away From the Barn( dfs序 + 主席树 )
子树操作, dfs序即可.然后计算<=L就直接在可持久化线段树上查询 -------------------------------------------------------------- ...
随机推荐
- [dp]uestc oj E - 菲波拉契数制
E - 菲波拉契数制 Time Limit: 3000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Submi ...
- 基于 Ubuntu + nextCloud 搭建自己的私人网盘
提醒一下,如果之前通过apache搭建了网站,不要用snap命令来搭建,否则,至少有一个无法正常运行(不要问我怎么知道的,都是血的教训啊). 你可以通过腾讯云的实验主机进行尝试. 1.基础设置 切换为 ...
- python_80_模块定义导入优化实例
运行结果 __import__作用: 同import语句同样的功能,但__import__是一个函数,并且只接收字符串作为参数,所以它的作用就可想而知了.其实import语句就是调用这 ...
- Python 继承实现的原理(继承顺序)
继承顺序 Python3 : 新式类的查找顺序:广度优先 新式类的继承: class A(object): Python2 3 都是了 MRO算法--生成一个列表保存继承顺序表 不找到底部 Pytho ...
- jQuery向界面输出时保留两位小数
通过JSTL下的<fmt:formatNumber>标签实现,具体实现代码如下: <%@ taglib uri="http://java.sun.com/jsp/jstl/ ...
- android 通过adb 和 ndk调试堆栈
打开终端 , 输入以下命令, armeabi是应用编译好的.so库的路径 adb logcat|ndk-stack -sym ./armeabi/ 如果堆栈报错,会弹出报错内容. 如下: C:\Use ...
- IOS使用Jenkins进行持续集成
本文主要讲述在开发过程中,提高工作效率而进行的IOS-Jenkins的持续集成. 背景 平时我们开发完成IOS项目,需要打包给测试人员进行测试.其中的过程需要重复进行:修改配置项--编译---连接设备 ...
- iOS应用架构谈-part1概述
当我们讨论客户端应用架构的时候,我们在讨论什么? 其实市面上大部分应用不外乎就是颠过来倒过去地做以下这些事情: --------------- --------------- ------------ ...
- C/C++基础知识:函数指针和指针函数的基本概念
[函数指针] 在程序运行中,函数代码是程序的算法指令部分,它们和数组一样也占用存储空间,都有相应的地址.可以使用指针变量指向数组的首地址,也可以使用指针变量指向函数代码的首地址,指向函数代码首地址的指 ...
- Redis的安装、服务配置
在网上找了很多资料,有些可以正常安装,有些安装会出毛病,仔细想了想,还是自己整理一份吧,仅仅为自己下次再用的时候,能够快速的定位到可以正常用的文章! 我使用的是VMware Workstation P ...