[BZOJ2678][Usaco2012 Open]Bookshelf
P.S. 偶然间发现可以用 markdown。。。
[BZOJ2678][Usaco2012 Open]Bookshelf
试题描述
When Farmer John isn't milking cows, stacking haybales, lining up his cows, or building fences, he enjoys sitting down with a good book. Over the years, he has collected \(N\) books (\(1 \leq N \leq 10^5\)), and he wants to build a new set of bookshelves to hold them all. Each book \(i\) has a width \(W(i)\) and height \(H(i)\). The books need to be added to a set of shelves in order; for example, the first shelf should contain books \(1...k\) for some \(k\), the second shelf should start with book \(k+1\), and so on. Each shelf can have a total width of at most \(L\) (\(1 \leq L \leq 10^9\)). The height of a shelf is equal to the height of the tallest book on that shelf, and the height of the entire set of bookshelves is the sum of the heights of all the individual shelves, since they are all stacked vertically. Please help FJ compute the minimum possible height for the entire set of bookshelves. PROBLEM NAME: bookshelf
输入
Line 1: Two space-separated integers: \(N\) and \(L\).
Lines 2..1+N: Line \(i+1\) contains two space-separated integers: \(H(i)\) and \(W(i)\). (\(1 \leq H(i) \leq 10^6\); \(1 \leq W(i) \leq L\)).
输出
- Line 1: The minimum possible total height for the set of bookshelves. SAMPLE
输入示例
5 10 //五本书,每个书架的宽度不超过10
5 7 //第一本书的高度及宽度
9 2
8 5
13 2
3 8
输出示例
21
数据规模及约定
见“试题描述”和“输入”
题解
算法1
这题总体思路肯定是 dp,设 \(f_i\) 表示前 \(i\) 本书所需的最小高度和,则容易得到 \(f_i = min\{ f_j + max\{ H_{j+1}, H_{j+2}, ... , H_i \} | \sum_{k=j+1}^i \leq L \}\)
那么我们只需要考虑从哪个 \(j\) 转移到 \(i\) 就好了。
于是我们可以维护一个 \(H_i\) 下降的单调栈,然后每次计算 \(f_i\) 的时候用前缀和 \(S_i - S_j \leq L\) 的限制二分出 \(j\) 的位置(数组 \(S\) 表示高度的前缀和),然后就是查询单调栈中一段区间的最小值,可以用线段树维护。栈的插入、删除操作都可以当做线段树的点修改。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
}
#define maxn 100010
#define oo 2147483647
#define ool (1ll << 60)
#define LL long long
int n, hei[maxn], wid[maxn], lim;
LL Sw[maxn];
int S[maxn], mx[maxn], top;
LL f[maxn];
LL minv[maxn<<2];
void update(int o, int l, int r, int p, LL v) {
if(l == r) minv[o] = v;
else {
int mid = l + r >> 1, lc = o << 1, rc = lc | 1;
if(p <= mid) update(lc, l, mid, p, v);
else update(rc, mid + 1, r, p, v);
minv[o] = min(minv[lc], minv[rc]);
}
return ;
}
LL query(int o, int l, int r, int ql, int qr) {
if(l > r) return ool;
if(ql <= l && r <= qr) return minv[o];
int mid = l + r >> 1, lc = o << 1, rc = lc | 1;
LL res = ool;
if(ql <= mid) res = min(res, query(lc, l, mid, ql, qr));
if(qr > mid) res = min(res, query(rc, mid + 1, r, ql, qr));
return res;
}
int main() {
n = read(); lim = read();
for(int i = 1; i <= n; i++) hei[i] = read(), wid[i] = read(), Sw[i] = Sw[i-1] + wid[i];
f[0] = 0; S[0] = 0;
S[top = 1] = mx[1] = 0;
update(1, 1, n + 1, 1, 0);
for(int i = 1; i <= n; i++) {
while(top && hei[i] > mx[top]) top--;
S[++top] = i; mx[top] = hei[i];
// printf("stack: "); for(int j = 1; j <= top; j++) printf("%d%c", S[j], j < top ? ' ' : '\n');
update(1, 1, n + 1, top, f[S[top-1]] + hei[i]);
int l = 1, r = top, pos = lower_bound(Sw, Sw + n + 1, Sw[i] - lim) - Sw;
while(l < r) {
int mid = l + r >> 1;
if(Sw[i] - Sw[S[mid]] > lim) l = mid + 1; else r = mid;
}
f[i] = min(query(1, 1, n + 1, l + 1, top), f[pos] + mx[l]);
// printf("%d %d | %d: %lld\n", l, S[l], i, f[i]);
}
printf("%lld\n", f[n]);
return 0;
}
算法2
还是维护单调栈,我们发现这其实是一个双头队列,偶然在 UOJ 上发现了一个 \(O(n)\) 的做法。
其实就是用两个栈模拟一个双头队列,注意到每个栈的前缀最小值是可以 \(O(1)\) 修改和询问的,所以用这种方法就可能将算法总复杂度降到 \(O(n)\)。
我觉得最妙的地方在于重构,当某个栈空的时候将另一个栈分一半给这个已经空的栈(即暴力重构),复杂度有保证,详见上面链接(读者也不妨自己思考思考)。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
}
#define maxn 100010
#define oo 2147483647
#define ool (1ll << 60)
#define LL long long
int n, lim, hei[maxn], wid[maxn], lst[maxn]; // lst: last bigger height
LL Sw[maxn];
struct Info {
int pos, mxv; LL val;
Info() {}
Info(int _1, int _2, LL _3): pos(_1), mxv(_2), val(_3) {}
} lft[maxn], rgt[maxn];
int Sl, Sr;
LL mnl[maxn], mnr[maxn];
int rebuild() {
if(!Sl && !Sr) return -1;
if(!Sl) {
int mid = Sr + 1 >> 1;
for(int i = mid; i; i--) lft[++Sl] = rgt[i], mnl[Sl] = min(mnl[Sl-1], lft[Sl].val);
for(int i = mid + 1; i <= Sr; i++) rgt[i-mid] = rgt[i], mnr[i-mid] = min(mnr[i-mid-1], rgt[i-mid].val);
Sr -= mid;
return 0;
}
int mid = Sl + 1 >> 1;
for(int i = mid; i; i--) rgt[++Sr] = lft[i], mnr[Sr] = min(mnr[Sr-1], rgt[Sr].val);
for(int i = mid + 1; i <= Sl; i++) lft[i-mid] = lft[i], mnl[i-mid] = min(mnl[i-mid-1], lft[i-mid].val);
Sl -= mid;
return 0;
}
int q[maxn], hd, tl;
LL f[maxn];
int main() {
n = read(); lim = read();
for(int i = 1; i <= n; i++) hei[i] = read(), wid[i] = read(), Sw[i] = Sw[i-1] + wid[i];
hei[0] = oo;
for(int i = 1; i <= n; i++) {
lst[i] = i - 1;
while(hei[lst[i]] <= hei[i]) lst[i] = lst[lst[i]];
}
mnl[0] = mnr[0] = ool;
rgt[++Sr] = Info(lst[1], hei[1], hei[1]);
mnr[1] = f[1] = hei[1];
q[hd = tl = 1] = 1;
int lft_edge = 0;
for(int i = 2; i <= n; i++) {
while(1) {
if(!Sr && rebuild()) break;
if(rgt[Sr].mxv > hei[i]) break;
Sr--;
}
rgt[++Sr] = Info(lst[i], hei[i], f[lst[i]] + hei[i]);
mnr[Sr] = min(mnr[Sr-1], rgt[Sr].val);
while(1) {
if(!Sl && rebuild()) break;
if(Sw[i] - Sw[lft[Sl].pos] <= lim) break;
Sl--;
}
while(Sw[i] - Sw[lft_edge] > lim) lft_edge++;
while(hd <= tl && hei[i] >= hei[q[tl]]) tl--; q[++tl] = i;
while(lft_edge > q[hd]) hd++;
f[i] = min(min(mnl[Sl], mnr[Sr]), f[lft_edge] + hei[q[hd]]);
// printf("f[%d] = %lld\n", i, f[i]);
}
printf("%lld\n", f[n]);
return 0;
}
P.S. markdown 好难用。。。
[BZOJ2678][Usaco2012 Open]Bookshelf的更多相关文章
- [USACO2012 OPEN] Bookshelf
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2678 [算法] 首先不难想到如下DP : 记f[i]表示前i本书的高度和最小值 显然 ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- bookshelf
nodejs mysql ORM 比node-mysql好用多了. bookshelf 支持restful功能,用到的时候研究下:https://www.sitepoint.com/getting-s ...
- POJ3628 Bookshelf 2(01背包+dfs)
Bookshelf 2 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8745 Accepted: 3974 Descr ...
- Bookshelf 2
Bookshelf 2 Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit ...
- POJ 3628 Bookshelf 2(01背包)
Bookshelf 2 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9488 Accepted: 4311 Descr ...
- 动态规划(状态压缩):BZOJ 2621 [Usaco2012 Mar]Cows in a Skyscraper
2621: [Usaco2012 Mar]Cows in a Skyscraper Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 303 Sol ...
- BZOJ3016: [Usaco2012 Nov]Clumsy Cows
3016: [Usaco2012 Nov]Clumsy Cows Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 71 Solved: 52[Submi ...
- BZOJ 3011: [Usaco2012 Dec]Running Away From the Barn( dfs序 + 主席树 )
子树操作, dfs序即可.然后计算<=L就直接在可持久化线段树上查询 -------------------------------------------------------------- ...
随机推荐
- UVA 177 PaperFolding 折纸痕 (分形,递归)
著名的折纸问题:给你一张很大的纸,对折以后再对折,再对折……每次对折都是从右往左折,因此在折了很多次以后,原先的大纸会变成一个窄窄的纸条.现在把这个纸条沿着折纸的痕迹打开,每次都只打开“一半”,即把每 ...
- topcpder SRM 664 div2 A,B,C BearCheats , BearPlays equalPiles , BearSorts (映射)
A题,熊孩子测视力,水题,题意就是判断一下两个数对应位不相同的数字有多少个. #include<bits/stdc++.h> using namespace std; class Bear ...
- Array - Two Sum
import java.util.HashMap; import java.util.Map; /** * 分析: * 普通实现-嵌套循环两次,时间O(n2),空间O(1) * 复杂实现-循环一次,时 ...
- 关于SpringMVC注解
1.@RequestMapping RequestMapping是一个用来处理请求地址映射的注解(将请求映射到对应的控制器方法中),可用于类或方法上.用于类上,表示类中的所有响应请求的方法都是以该地址 ...
- Bootstrap历练实例:嵌套的媒体对象
<!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...
- 实现HTTP文件下载
[原文:http://www.jb51.net/article/89958.htm] HTTP实现文件下载时,只要在服务器设置好相关响应头,并使用二进制传输文件数据即可,而客户端(浏览器)会根据响应头 ...
- 禁止按键F5和禁止鼠标右键菜单 js代码
<script language="javascript"> //禁止按键F5 document.onkeydown = function(e){ e = window ...
- 基于matlab的蓝色车牌定位与识别---分割
接着上面的工作,接下去就该是进行字符分割了.考虑到为了后面的字符识别,因此在这部分需要实现的目标是需要把车牌的边框全部切除,对重新定位的车牌进行垂直方向水平方向调整,保证字符是正的.最后才是字符的分割 ...
- 【wqs二分】HHHOJ#15. 赤
这个wqs二分并不熟练…… 题目描述 #15. 赤 题目分析 两维都用wqs二分,其他没有什么特殊之处. 重点在于,wqs二分还原最优解的时候,增量是强制给的k. #include<bits/s ...
- Linux - 后台运行 ctrl + z , jobs , bg , fg
一.& 最经常被用到 这个用在一个命令的最后,可以把这个命令放到后台执行 二.ctrl + z 可以将一个正在前台执行的命令放到后台,并且暂停三.jobs查看当前有多少在后台运行的命令四.fg ...