题目大意

两种操作

1)插入一个过原点的圆

2)询问一个点是否在所有的圆中

分析

在圆中则在半径范围内

设圆心 \(x,y\) 查询点\(x_0,y_0\)

则\(\sqrt{(x-x_0)^2+(y-y_0)^2} <= \sqrt{x^2+y^2}\)

解得\(2x_0 * x+2y_0 *y -(x_0^2+y_0^2)>=0\)

x,y 为变量

是个半平面的式子

题意变成

1)插入一个点

2)询问是否所有点都在半平面内

插入互不干扰

点都在半平面内当且仅当凸包在半平面内

cdq,维护上下凸包,三分找出离直线最近的点

(凸包上点与直线的叉积是单峰的)

solution

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
typedef double db;
const int M=500007; inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
} int m,n,nup,ndw; struct pt{
db x,y;
pt(db X=0.0,db Y=0.0){x=X;y=Y;}
}p[M],up[M],dw[M]; struct node{
int kd;
pt d;
node(int kk=0,pt pp=pt()){kd=kk;d=pp;}
}opr[M]; struct line{
pt P,v;
line(pt pp=pt(),pt vv=pt()){P=pp; v=vv;}
}; bool ans[M]; bool operator <(pt x,pt y){return (x.x!=y.x)?(x.x<y.x):(x.y<y.y);}
pt operator +(pt x,pt y){return pt(x.x+y.x,x.y+y.y);}
pt operator -(pt x,pt y){return pt(x.x-y.x,x.y-y.y);}
pt operator *(pt x,db d){return pt(x.x*d,x.y*d);}
pt operator /(pt x,db d){return pt(x.x/d,x.y/d);} db dot(pt x,pt y){
return x.x*y.x+x.y*y.y;
} db cross(pt x,pt y){
return x.x*y.y-x.y*y.x;
} db length(pt x){
return sqrt(dot(x,x));
} db shadow(pt x,pt y,pt to){
return dot(y-x,to-x)/length(to-x);
} db area(pt x,pt y,pt z){
return cross(y-x,z-x);
} void convex(){
sort(p+1,p+n+1); int i;
nup=0;
for(i=1;i<=n;i++){
while(nup>1&&area(up[nup-1],up[nup],p[i])>=0) nup--;
up[++nup]=p[i];
} ndw=0;
for(i=1;i<=n;i++){
while(ndw>1&&area(dw[ndw-1],p[i],dw[ndw])>=0) ndw--;
dw[++ndw]=p[i];
}
} bool check(pt x){
if(x.y==0){
return x.x <= 2*up[1].x;
}
else{
line nw=line(pt(0,dot(x,x)/(2.0*x.y)),pt(1,-x.x/x.y));
if(x.y>0){
int l=1,r=ndw,m1,m2,len;
db tp1,tp2;
while(l+1<r){
len=(r-l+1)/3;
m1=l+len;
m2=m1+len;
tp1=cross(nw.v,dw[m1]-nw.P);
tp2=cross(nw.v,dw[m2]-nw.P);
if(tp1<0||tp2<0) return 0;
if(tp1<tp2) r=m2-1;
else l=m1+1;
}
tp1=cross(nw.v,dw[l]-nw.P);
tp2=cross(nw.v,dw[r]-nw.P);
if(tp1<0||tp2<0) return 0;
}
else{
int l=1,r=nup,m1,m2,len;
db tp1,tp2;
while(l+1<r){
len=(r-l+1)/3;
m1=l+len;
m2=m1+len;
tp1=cross(nw.v,up[m1]-nw.P);
tp2=cross(nw.v,up[m2]-nw.P);
if(tp1<0||tp2<0) return 0;
if(tp1<tp2) l=m1+1;
else r=m2-1;
}
tp1=cross(nw.v,up[l]-nw.P);
tp2=cross(nw.v,up[r]-nw.P);
if(tp1<0||tp2<0) return 0;
}
}
return 1;
} void solve(int l,int r){
if(l>=r) return;
int mid=l+r>>1,i;
solve(l,mid);
solve(mid+1,r);
for(n=0,i=l;i<=mid;i++)
if(opr[i].kd==0) p[++n]=opr[i].d;
if(n==0) return;
convex();
for(i=mid+1;i<=r;i++)
if(opr[i].kd==1&&ans[i]){
ans[i]=check(opr[i].d);
}
} int main(){
db x,y;
int i,kd; m=rd();
bool ok=0;
for(i=1;i<=m;i++){
kd=rd();
if(kd==0) ok=1;
scanf("%lf%lf",&x,&y);
opr[i]=node(kd,pt(x,y));
ans[i]=ok;
} solve(1,m); for(i=1;i<=m;i++)
if(opr[i].kd==1) puts(ans[i]?"Yes":"No"); return 0;
}

bzoj 2961 共点圆 cdq+凸包+三分的更多相关文章

  1. [BZOJ2961] 共点圆 [cdq分治+凸包]

    题面 BZOJ传送门 思路 首先考虑一个点$(x_0,y_0)$什么时候在一个圆$(x_1,y_1,\sqrt{x_1^2+y_1^2})$内 显然有:$x_1^2+y_1^2\geq (x_0-x_ ...

  2. BZOJ2961 共点圆[CDQ分治]

    题面 bzoj 其实就是推一下圆的式子 长成这个样子 假设要查询的点是(x, y) 某个圆心是(p, q) \((x - p)^2 + (y - q)^2 \leq p^2 + q^2\) 变成 \( ...

  3. 【BZOJ2961】共点圆(CDQ分治)

    [BZOJ2961]共点圆(CDQ分治) 题面 BZOJ 题解 设询问点\((x,y)\),圆心是\((X,Y)\) 那么如果点在园内的话就需要满足 \((X-x)^2+(Y-y)^2\le X^2+ ...

  4. bzoj 4311 向量 时间线建线段树+凸包+三分

    题目大意 你要维护一个向量集合,支持以下操作: 1.插入一个向量(x,y) 2.删除插入的第i个向量 3.查询当前集合与(x,y)点积的最大值是多少.如果当前是空集输出0 分析 按时间线建线段树 大致 ...

  5. bzoj 3533 [Sdoi2014]向量集 线段树+凸包+三分(+动态开数组) 好题

    题目大意 维护一个向量集合,在线支持以下操作: "A x y (|x|,|y| < =10^8)":加入向量(x,y); "Q x y l r (|x|,|y| & ...

  6. 【BZOJ4140】共点圆加强版(二进制分组)

    [BZOJ4140]共点圆加强版(二进制分组) 题面 BZOJ 题解 我卡精度卡了一天.... 之前不强制在线的做法是\(CDQ\)分治,维护一个凸壳就好了. 现在改成二进制分组,每次重建凸壳就好了. ...

  7. BZOJ2961: 共点圆(CDQ分治+凸包)

    题面 传送门 题解 这题解法真是多啊--据说可以圆反演转化为动态插入半平面并判断给定点是否在半平面交中,或者化一下改成给定点判断是否所有点都在某一个半平面内-- 鉴于圆反演我也不会,这里讲一下直接推的 ...

  8. bzoj2961 共点圆 (CDQ分治, 凸包)

    /* 可以发现可行的圆心相对于我们要查询的点是在一个半平面上, 然后我们要做的就是动态维护凸壳然后用这个半平面去切它 看看是否是在合法的那一面 然后cdq分治就可以了 代码基本是抄的, */ #inc ...

  9. [BZOJ2961]共点圆-[凸包+cdq分治]

    Description 传送门 Solution 考虑对于每一个点: 设圆的坐标为(x,y),点的坐标为(x0,y0).依题意得,当一个点在圆里,需要满足(x-x0)2+(y-y0)2<=x2+ ...

随机推荐

  1. Python静态方法 类方法

    通常情况下,类中函数中定义的所有函数,,都是对象的绑定方法,除此之外,还有专门的静态方法和类方法,这两个是专门给类使用的,但是对象非要调用也是不会报错的. 对象在调用的时候会把自己传递给self,也就 ...

  2. JS实用技术

    JS外部引用其他文件(建议) <script src="myScript1.js"></script> JS输出显示方式 使用 window.alert() ...

  3. springmvc的第一个程序

    文中用的框架版本:spring 3,hibernate 3,没有的,自己上网下. web.xml配置: <?xml version="1.0" encoding=" ...

  4. MFC中获得各种指针概述(个人觉得是很重要的重点)

    前言:这学期学习MFC(有点过时的东西),上课时,老师讲到获取当前活动指针,获取视图指针,文档指针,文档模板指针等(已晕) 后来下来真正写代码的时候发现这些几乎都是需要用到的东西,所以特此记录下,让自 ...

  5. [转]LLE

    原始特征的数量可能很大,或者说样本是处于一个高维空间中,通过映射或变换的方法,降高维数据降低到低维空间中的数据,这个过程叫特征提取,也称降维. 特征提取得基本任务研究从众多特征中求出那些对分类最有效的 ...

  6. 洛谷 P1835 素数密度

    https://www.luogu.org/problemnew/show/P1835 对于40%,对每个数进行最大$O(\sqrt n)$的判断,因为n比较大所以超时. 想到线性筛,然而我们并不能筛 ...

  7. 【启发式拆分】bzoj5200: [NWERC2017]Factor-Free Tree

    和bzoj4059: [Cerc2012]Non-boring sequences非常相似 Description 一棵Factor-Free Tree是指一棵有根二叉树,每个点包含一个正整数权值,且 ...

  8. 如何用纯 CSS 创作一个过山车 loader

    效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/KBxYZg/ 可交互视频 此视频是 ...

  9. 【nginx】 FastCGI sent in stderr: "Primary script unknown" while reading response header from upstream

    2013/10/22 20:05:49 [error] 12691#0: *6 FastCGI sent in stderr: "Primary script unknown" w ...

  10. Hibernate知识梳理

    一.SessionFactory接口 是单个数据库映射关系(ORM)经过编译后的内存镜像.SessionFactory(的实例)作为应用中的一个全局对象(工厂),可以随处打开/创建一个session, ...