AtCoder Grand Contest 006

<br >

心血来潮,开了一套AGC.....

然后发现各种不会做.........感觉智商被AGC摁在地上摩擦......

<br >

代码戳这里

<br >

A - Prefix and Suffix

这道题目还是送温暖的...

直接枚举长度从\(n\)到\(n+n\)

最后的\(n\)为用第二个字符串填充,剩余空缺从前到后一次用第一个字符串填充

最后验证前\(n\)位是否满足第一个字符串即可

由于是从小到大枚举,枚举到可行直接输出答案即可


B - Median Pyramid Easy

这道题目就比较有意思了

首先考虑不可行的情况,显然当\(x=1\)或\(2*n-1\)的时候是不可行的

因为每一次取的都是三个格子中的中位数,显然到第二行的时候,\(1\)或\(2*n-1\)就消失不见了,更高的行中不可能出现

然后考虑其余情况的构造方法

一种比较通用的构造方法是,最高行为\(x\),我们使得下一行出现至少两个\(x\)即可,如下图所示

我们只要保证图中所有的红色格子都是\(x\)的话,最后一行一定是\(x\)

那么,现在,我们只需要构造最后一行的四个格子,使得从第二行开始就在指定位置出现连续的两个\(x\)了

这样就比较思博了,\((x-1),(x),(x+1),(x-2)\)即可

但是我们发现,当\(x=2\)的时候,会有点问题,那么我们对\(x=2\)特判一下,构造\((x+1),(x),(x-1),(x+2)\)

当然,构造的方法不唯一

最后注意特判\(n=2\)的情况,不过我这样构造的话,不会出现问题


C - Rabbit Exercise

这道期望题目一颗赛艇啊

首先考虑对称位置的处理,显然\(x_i\)关于\(x_{i-1}\)和\(x_{i+1}\)的对称位置分别是\(2*x_{i-1}-x_{i}\)和\(2*x_{i+1}-x_{i}\)

考虑兔子\(i\)的期望

\[E(x_i')=\frac{1}{2}E(2x_{i-1}-x_i)+\frac{1}{2}E(2x_{i+1}-x_i)\]

\[=E(x_{i-1})+E(x_{i+1})-E(x_i)\]

这样,我们似乎已经得到了\(O(MK)\)的算法

我们从几何角度来考虑一下这个操作

其实就是\(y_i\)相对于\(y_{i-1}\)和\(y_{i-2}\)的相对位置发生了变化,\(y_i\)在外面的情况也是如此

再一般的来说,就是\(E(x_i)-E(x_{x-1})\)和\(E(x_i)-E(x_{x+1})\)的值进行了交换

那么,我们考虑差分,这样,每一次的操作就是对两个数进行交换了

而交换操作是分组进行的,我们可以根据类似快速幂的方式,在\(O(logk)\)的时间内完成交换

那么总的复杂度就是\(O(nlogk)\)


D - Median Pyramid Hard

这道题目似乎是B题的SPJ啊.....

考虑二分答案,假设当前需要验证的答案为\(x\),表示答案\(≥x\)是否成立

那么,根据最下面一行和\(≥x\)的关系,我们可以得到底层的\(0/1\)数列,\(1\)表示\(≥x\)

我们现在得到了底层的\(0/1\)数列,而题目所给的条件,上一层的一格为\(1\),当且仅当下一层与之对应的三个中至少有两个\(1\)

现在,符合情况的话,那么就是顶层为\(1\)

我们可以画画图来分析一下底层的情况,如何向上传导

我们可以发现,当出现连续的两个\(1\)的时候,他们所对应的的上面,全部为\(1\)

那么,这样的情况如何向外拓展呢?

我们发现,当连续的两个\(1\)旁边出现隔着一个位置的\(1\)的是否,这个全是\(1\)的竖行,可以向着隔着一个位置的\(1\)的方向拓展一列

那么我们只需要正着反着,各扫一遍

这样一来,我们就可以在\(O(2n)\)的时间内验证答案了

还有一种比较特殊的情况是,底层不需要出现连续的两个\(1\)

特判一下

总的时间复杂度是\(O(3n*logn)\)


E - Rotate 3x3

这道题目很繁琐啊QAQ......

画了满满一页草稿纸......

首先,我们透过现象看本质,3*3Rotate 实际上就是把左右两列交换,然后在把三列全部倒置

那么,其实可以发现,每一列中的三个数是不会改变的,而且三个数要么正向,要么逆向

再其次,因为交换的是间隔的两列,所以矩阵中的奇数列和偶数列其实是相对独立的

我们把操作分成两个来思考

对间隔的两列旋转(这个旋转操作自带一个倒置和一个左右交换)、对某一列倒置

对于第一个问题的数量,我们可以转为这个问题:给出\(n\)个数的一个全排列,每次可以交换相邻的两个数,求每个数被交换的次数

贪心的做,我们先把在最后的数换下去,然后在换倒数第二个.......

暴力的做是\(O(n^2)\),考虑用树状数组维护一波,\(O(nlogn)\)

第二个问题,只要判断第一个问题的奇偶性,就可以直接得到答案了

那么回到原问题,可行性怎么判断

首先判断前面提到的一些条件...balabala

然后,就是对后面两个子问题的判断了

对于奇数列的第一个问题,左右交换的前提是其中间的偶数列进行倒置

那么,也就是说,奇数列的第一个问题的奇偶性应当与偶数列的第二个问题相同;偶数列的判断亦是如此

这样一来,问题就解决了,时间复杂度\(O(nlogn)\),不过题解里给出的复杂度是\(O(n)\),不是很明白他是怎么实现的,可能他的\(d\)数组可以线性求吧Orz


F - Blackout

又一次深刻体会到了出题人的强大Orz...

首先,我们可以把这个矩阵问题转变为图论问题

我们把格子\((x,y)\)转变为一条有向边\(x\rightarrow y\),那么,当\(x\rightarrow y\)和\(y\rightarrow z\)存在时,有边\(z\rightarrow x\)

我们可以先来尝试探索一些规律

对于图中的\(n\)个点,每个点\(x\)都有边连向\(x+1\),我们尝试更新一波边,发现只有在\(x\)和\(y\)满足\(x+1\equiv y (mod\; 3)\)的时候,\(x\)有指向\(y\)的边

以此,我们发现这张图和\(3\)有关系(出题人是这么说的.......)

于是,我们用三色来对图进行染色,使得相邻的节点不同色

接下来,我们分别讨论三种情况

【1】 染色成功,且图中出现了不同的三种颜色\(x\)、\(y\)、\(z\)

那么,我们对于三种不同颜色的边,可以把所有\(x\rightarrow y\)、\(y\rightarrow z\)、\(z\rightarrow x\)都连上

证明:如下图,如果上述情况成立的话,那么,一定至少存在\(x\rightarrow y\)、\(y\rightarrow z\),我们当然可以把\(z\rightarrow x\)连上,当有新的边\(u\rightarrow x\)时,我们发现,\(y\rightarrow u\)也同样可以连上,那么,联通的所有点都是可以两先关的

【2】染色成功,图中出现的颜色不足三种

那么显然,不存在\(x\rightarrow y\)、\(y\rightarrow z\)这样的边对,那么,答案就是边数

【3】染色失败

那么,画画图很容易看出,一定存在着环(且环的大小一定不是\(3\)的倍数)

那么,很显然得,所有联通的点之间,两两之间的所有边均可以连上

这样一来,我们对于每一个联通块一次这样讨论即可,时间复杂度\(O(m)\)


新成就get,打穿了一道AGC

AGC006的更多相关文章

  1. AGC006 C Rabbit Exercise——思路(置换)

    题目:https://agc006.contest.atcoder.jp/tasks/agc006_c 选了 i 位置后 x[ i ] = x[ i-1 ] + x[ i+1 ] - x[ i ] . ...

  2. 【AtCoder】AGC006

    AGC006 A - Prefix and Suffix -- #include <bits/stdc++.h> #define fi first #define se second #d ...

  3. 【AtCoder】【模型转化】【二分答案】Median Pyramid Hard(AGC006)

    题意: 给你一个排列,有2*n-1个元素,现在进行以下的操作: 每一次将a[i]替换成为a[i-1],a[i],a[i+1]三个数的中位数,并且所有的操作是同时进行的,也就是说这一次用于计算的a[], ...

  4. AtCoder Grand Contest 006 (AGC006) C - Rabbit Exercise 概率期望

    原文链接https://www.cnblogs.com/zhouzhendong/p/AGC006C.html 题目传送门 - AGC006C 题意 有 $n$ 个兔子,从 $1$ 到 $n$ 编号, ...

  5. [AGC006] D - Median Pyramid Hard 二分

    Description ​ 现在有一个NN层的方块金字塔,从最顶层到最底层分别标号为1...N1...N. ​ 第ii层恰好有2i−12i−1个方块,且每一层的中心都是对齐的. 这是一个N=4N=4的 ...

  6. 【AGC006 C】Rabbit Exercise

    题意 有 \(n\) 只兔子在数轴上,第 \(i\) 只兔子的初始坐标为整数 \(x_i\). 现在这些兔子会按照下面的规则做体操.每一轮体操都由 \(m\) 次跳跃组成:在第 \(j\) 次跳跃时, ...

  7. AtCoder Grand Contest 1~10 做题小记

    原文链接https://www.cnblogs.com/zhouzhendong/p/AtCoder-Grand-Contest-from-1-to-10.html 考虑到博客内容较多,编辑不方便的情 ...

  8. [AT2164] [agc006_c] Rabbit Exercise

    题目链接 AtCoder:https://agc006.contest.atcoder.jp/tasks/agc006_c 洛谷:https://www.luogu.org/problemnew/sh ...

  9. AGC600 C Rabbit Exercise —— 置换

    题目:https://agc006.contest.atcoder.jp/tasks/agc006_c 考虑 \( i \) 号兔子移动后位置的期望,是 \( x_{i+1} + x_{i-1} - ...

随机推荐

  1. Python基础——集合(set)

    集合可以去除掉列表中重复的元素. 创建 list1=[123,123,456,789] list1=set(list1) list1 set1=set() type(set1) set1=set([1 ...

  2. Python函数的基本定义和调用以及内置函数

    首先我们要了解Python函数的基本定义: 函数是什么? 函数是可以实现一些特定功能的小方法或是小程序.在Python中有很多内建函数,当然随着学习的深入,你也可以学会创建对自己有用的函数.简单的理解 ...

  3. UVA - 11054 Wine trading in Gergovia 扫描法

    题目:点击打开题目链接 思路:考虑第一个村庄,如果第一个村庄需要买酒,那么a1>0,那么一定有劳动力从第二个村庄向第一个村庄搬酒,这些酒可能是第二个村庄生产的,也可能是从其他村庄搬过来的,但这一 ...

  4. POJ:3160-Father Christmas flymouse

    Father Christmas flymouse Time Limit: 1000MS Memory Limit: 131072K Description After retirement as c ...

  5. vijos--繁华的都市

    描述 城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造.城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路 ...

  6. meta-data

    <meta-data android:name="string"   android:resource="resource specification"  ...

  7. VS重置开发环境的方法

    经常由于各种插件的原因,导致VS有使用过程中出现断点进不去等各种情况的时候,这个方法可以让你的VS回到最初安装的状态,当然,这时候,各种配置也没有了,不到万不得已就勿使用. 下面以Vs2015来说明: ...

  8. VMware-Ubuntu入门(1)

    大家都说Linux系统是让程序员用起来更有成就感的系统,我也来体验下: 对于小白鼠的我,并没有直接在电脑上重装Linux系统,而是通过VMware工具搭建Ubuntu虚拟linux环境. 首先展示下V ...

  9. Spring中的注解 @Qualifier

    在使用Spring框架中@Autowired标签时默认情况下使用 @Autowired 注释进行自动注入时,Spring 容器中匹配的候选 Bean 数目必须有且仅有一个.当找不到一个匹配的 Bean ...

  10. Oracle 用户和权限

    Oracle 用户和权限Oracle 中,一般不会轻易在一个服务器上创建多个数据库,在一个数据库中,不同的项目由不同的用户访问,每一个用户拥有自身创建的数据库对象,因此用户的概念在 Oracle中非常 ...